RESUMEN
Experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS), is triggered by myelin-specific Th1 and Th17 cells. The immunomodulatory activities of melatonin have been shown to be beneficial under several conditions in which the immune system is exacerbated. Here, we sought to elucidate the basis of the melatonin protective effect on EAE by characterizing the T effector/regulatory responses, particularly those of the memory cell subsets. Melatonin was tested for its effect on Th1, Th17 and T regulatory (Treg) cells in the lymph nodes and CNS of immunodominant peptide of myelin oligodendrocyte glycoprotein (pMOG)-immunized and EAE mice, respectively. The capacity of melatonin to ameliorate EAE as well as modifying both T cell response and effector/regulatory balance was surveyed. T cell memory subsets and CD44, a key activation marker involved in the EAE pathogenesis, were also examined. Melatonin protected from EAE by decreasing peripheral and central Th1/Th17 responses and enhancing both the Treg frequency and IL-10 synthesis in the CNS. Melatonin reduced the T effector memory population and its pro-inflammatory response and regulated CD44 expression, which was decreased in T effector cells and increased in Tregs. The alterations in the T cell subpopulations were associated with a reduced mononuclear infiltration (CD4 and CD11b cells) of the melatonin-treated mice CNS. For the first time, we report that melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses, effects that might be partially mediated by CD44. This immunomodulatory effect on EAE suggests that melatonin may represent an effective treatment option for MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Melatonina/administración & dosificación , Melatonina/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T Reguladores/metabolismo , Células TH1/metabolismo , Células Th17/metabolismoRESUMEN
Besides intervening in calcium homeostasis by means of calcitonin, C cells are also implicated in the synthesis of an increasing number of regulatory peptides that could exert a paracrine regulation on the neighbouring follicular cells. Among the latest peptides reported in C cells, there are several characteristic hypothalamic peptides, such as TRH, CART, and ghrelin, which are mainly involved in the regulation of the metabolism at hypothalamic-pituitary-thyroid axis. The main aim of the present work has been to study the synthesis of the referred hypothalamic peptides by normal and neoplastic C cells of different mammals as well as in C-cell lines of both rat (CA-77, 6-23) and human (TT) origins in order to elucidate whether this is a fact in this kind of vertebrates. With that objective, we have applied the immunoperoxidase technique to analyze the presence of TRH, CART, ghrelin, and somatostatin in thyroid tissues of different species, and immunofluorescence to study those same peptides in C-cell cultures. Furthermore, we have investigated their expression at mRNA level by RT-PCR analysis. Our results demonstrate immunocolocalization of CART, ghrelin, somatostatin and TRH with calcitonin in normal C cells of different mammals, as well as in rat and human neoplastic C cells. We also confirm the expression of those peptides in rat and human C-cell lines by RT-PCR. Consequently, we can conclude that the synthesis of those peptides by C cells is a general event characteristic of the thyroid gland in mammals.
Asunto(s)
Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Animales , Ghrelina/metabolismo , Cobayas , Humanos , Técnicas In Vitro , Proteínas del Tejido Nervioso/metabolismo , Conejos , Ratas , Somatostatina/metabolismo , Porcinos , Hormona Liberadora de Tirotropina/metabolismoRESUMEN
BACKGROUND: In mammals, the thyroid gland possesses two types of endocrine cells, follicular cells and C cells, which have different functions but share a similar endodermal origin (although from different regions of the primitive pharynx). Specifically, follicular cells derive from the ventral pharyngeal floor, while C cells derive from the fourth pair of pharyngeal pouches through the ultimobranchial bodies (UBBs). Disruptions to human midline thyroid morphogenesis are relatively frequent and known as thyroid dysgenesis, which is the leading cause of congenital hypothyroidism. In contrast, fourth branchial apparatus anomalies are very rare clinical entities. OBJECTIVES: The aim of this study was to analyze the morphological features and the immunohistochemical pattern of an aberrant ultimobranchial remnant, align with its persistent contribution to the formation of new C cells. METHODS: The thyroid gland of an old rat was serially sectioned and immunostained for the following markers: calcitonin, thyroglobulin, cytokeratins, PCNA, P63, E-cadherin, beta-tubulin and CD3. RESULTS: We detected a spontaneous congenital defect in the organogenesis of the UBB in an old rat, giving rise to an 'ultimobranchial sinus', which was accompanied by thymic tissue and an abscess. The epithelium contained basal/stem cells and contributed to the formation of abundant C cells and scarce follicular cells. CONCLUSIONS: The ultimobranchial sinus is an exceptional finding for representing the first spontaneous abnormality in the development of UBB reported in rats, and the opportunity to observe sustained C-cell differentiation from stem cells in an old rat. These findings are consistent with a common origin of both C cells and follicular cells from UBB.
Asunto(s)
Glándula Tiroides , Cuerpo Ultimobranquial , Animales , Ratas , Diferenciación Celular , MamíferosRESUMEN
Melatonin modulates a wide array of physiological events with pleiotropic effects on the immune system. While the relevance of specific melatonin membrane receptors has been well established for several biological functions, retinoic acid-related orphan receptor alpha (RORα) has been suggested as a mediator of nuclear melatonin signalling by results obtained from pharmacological approaches. However, a melatonin-mediated downstream effect cannot be ruled out, and further evidence is needed to support a direct interaction between melatonin and RORα. Here, we show that RORα is mainly located in human Jurkat T-cell nucleus, and it is co-immunoprecipitated with melatonin. Moreover, immunocytochemistry studies confirmed the co-localization of melatonin and RORα. Melatonin promoted a time-dependent decrease in nuclear RORα levels, suggesting a role in the RORα transcriptional activity. Interestingly, RORα acts as a molecular switch implicated in the mutually exclusive generation of Th17 and Treg cells, both involved in the harm/protection balance of immune conditions such as autoimmunity or acute transplant rejection. Therefore, the identification of melatonin as a natural modulator of RORα gives it a tremendous therapeutic potential for a variety of clinical disorders.
Asunto(s)
Melatonina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Linfocitos T/metabolismo , Western Blotting , Humanos , Inmunoprecipitación , Células Jurkat , Unión Proteica , Receptor alfa de Ácido RetinoicoRESUMEN
Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity.
Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Receptores de Tirotropina/metabolismo , Glándula Tiroides/citología , Animales , Calcitonina/biosíntesis , Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/biosíntesis , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , ARN Mensajero/genética , Ratas , Receptores de Tirotropina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Glándula Tiroides/fisiología , Tirotropina/farmacologíaRESUMEN
C cells are primarily known for producing calcitonin, a hypocalcemic and hypophosphatemic hormone. Nevertheless, besides their role in calcium homeostasis, C cells may be involved in the intrathyroidal regulation of follicular cells, suggesting a possible interrelationship between the two endocrine populations. If this premise is true, massive changes induced by different agents in the activity of follicular cells may also affect calcitonin-producing cells. To investigate the behaviour of C cells in those circumstances, we have experimentally induced two opposite functional thyroid states. We hyperstimulated the follicular cells using a goitrogen (propylthiouracil), and we suppressed thyroid hormone synthesis by oral administration of thyroxine. In both scenarios, we measured T(4), TSH, calcitonin, and calcium serum levels. We also completely sectioned the thyroid gland, specifically immunostained the C cells, and rigorously quantified this endocrine population. In hypothyroid rats, not only follicular cells but also C cells displayed hyperplastic and hypertrophic changes as well as increased calcitonin levels. When exogenous thyroxine was administered to the rats, the opposite effect was noted as a decrease in the number and size of C cells, as well as decreased calcitonin levels. Additionally, we noted that the two cell types maintain the same numerical relation (10 +/- 2.5 follicular cells per C cell), independent of the functional activity of the thyroid gland. Considering that TSH serum levels are increased in hypothyroid rats and decreased in thyroxine-treated rats, we discuss the potential involvement of thyrotropin in the observed results.
Asunto(s)
Bocio/patología , Hipotiroidismo/patología , Animales , Peso Corporal/efectos de los fármacos , Calcitonina/sangre , Calcio/sangre , Tamaño de la Célula/efectos de los fármacos , Bocio/inducido químicamente , Bocio/metabolismo , Hipotiroidismo/sangre , Hipotiroidismo/inducido químicamente , Masculino , Comunicación Paracrina/fisiología , Propiltiouracilo , Ratas , Ratas Wistar , Tirotropina/sangre , Tiroxina/sangreRESUMEN
Ultimobranchial (UB) remnants are a constant presence in the thyroid throughout rat postnatal life; however, the difficulty in identifying the most immature forms from the surrounding thyroid tissue prompted us to search for a specific marker. With that objective, we applied a panel of antibodies reported to be specific for their human counterpart, solid cell nests (SCNs), using double immunohistochemistry and immunofluorescence. Our results demonstrated that cytokeratin 34ßE12 and p63 are highly sensitive markers for the immunohistologic screening of UB-remnants, independently of their maturity or size. Furthermore, rat UB-follicles (UBFs) coincided with human SCNs in the immunohistochemical pattern exhibited by both antigens. In contrast, the pattern displayed for calcitonin and thyroglobulin differs considerably but confirm the hypothesis that rat UB-cells can differentiate into both types of thyroid endocrine cells. This hypothesis agrees with recent findings that thyroid C-cells share an endodermic origin with follicular cells in rodents. We suggest that the persistence of p63-positive undifferentiated cells in UB-remnants may constitute a reservoir of basal/stem cells that persist beyond embryogenesis from which, in certain unknown conditions, differentiated thyroid cells or even unusual tumors may arise.
Asunto(s)
Inmunohistoquímica/métodos , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Cuerpo Ultimobranquial/citología , Cuerpo Ultimobranquial/metabolismo , Animales , Animales Recién Nacidos , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Proteínas/metabolismo , Ratas WistarRESUMEN
In this study, the effect of chronic administration of melatonin on MRL/MpJ-Fas(lpr) mice has been studied. These mice spontaneously develop an autoimmune disease that has many features resembling human systemic lupus erythematosus. In fact, histological studies showed that all female mice and most male mice exhibited glomerular abnormalities, arteritic lesions, and cellular interstitial inflammatory infiltrate ranging from mild to severe patterns. Treatment with melatonin improved the histological pattern in females and worsened it in males. Moreover, female mice treated with melatonin showed a diminution of titers of total serum IgG, IgM, and anti-double-stranded DNA and anti-CII autoantibodies; a decrease in proinflammatory cytokines (IL-2, IL-6, interferon-gamma, TNF-alpha, and IL-1beta), an increase in antiinflammatory cytokines (IL-10), and a decrease in nitrite/nitrate. In male mice, treatment with melatonin exhibited the opposite effect, worsening all the immunological parameters with an elevation of titers of autoantibodies and a prevalence of proinflammatory vs. antiinflammatory cytokines. Similar results were obtained when lymphocytes from spleen and lymph nodes were cultured. Again, melatonin treatment in females decreased proinflammatory cytokines and increased antiinflammatory cytokines produced by lymphocytes; in males, the effect was the opposite. These findings suggest that melatonin action in MRL/MpJ-Fas(lpr) mice is gender dependent, probably through modulation and inhibition of sex hormones.
Asunto(s)
Lupus Eritematoso Sistémico/tratamiento farmacológico , Melatonina/toxicidad , Melatonina/uso terapéutico , Animales , Autoanticuerpos/sangre , Citocinas/biosíntesis , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Riñón/patología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Masculino , Ratones , Ratones Endogámicos MRL lpr , Caracteres SexualesRESUMEN
Since melatonin was first isolated in 1958 up to the last few years, this substance was considered a hormone exclusive to the pineal gland. Although melatonin has lately been identified in a large number of extrapineal sites, its potential biological actions have not yet been studied. This paper shows that human lymphocyte-synthesized melatonin plays a crucial role modulating IL-2/IL-2 receptor system because when blocking melatonin biosynthesis by the tryptophan hydroxylase inhibitor, parachlorophenylalanine, both IL-2 and IL-2 receptor levels fell, restoring them by adding exogenous melatonin. Moreover, we demonstrated that this endogenous melatonin interfered with the exogenous melatonin effect on IL-2 production. Melatonin exerted these effects by a receptor-mediated action mechanism because both IL-2 and IL-2 receptor expressions significantly decreased when lymphocytes were incubated in the presence of the specific membrane and/or nuclear melatonin receptor antagonists, luzindole, and/or CGP 55644, respectively. Finally, we made the real significance of the membrane melatonin receptors in this process clear, so prostaglandin E(2)-induced inhibition on IL-2 production increased when we blocked the membrane receptors using luzindole. In conclusion, these data show that endogenous melatonin is an essential part for an accurate response of human lymphocytes through the modulation of IL-2/IL-2 receptor system.
Asunto(s)
Interleucina-2/fisiología , Linfocitos/inmunología , Melatonina/biosíntesis , Receptores de Interleucina-2/fisiología , Adulto , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-2/genética , Linfocitos/efectos de los fármacos , Persona de Mediana Edad , Receptores de Interleucina-2/genética , Receptores de Melatonina/antagonistas & inhibidores , Receptores de Melatonina/fisiología , Triptaminas/farmacologíaRESUMEN
The ultimobranchial follicles (UBFs) are considered embryonic remnants from the ultimobranchial body (UBB). They are follicular structures that vary in size and appearance depending on the age of the rat. The main objective of this article was to study the progressive changes in shape, size, and frequency of the UBFs in the postnatal rat, from birth to old-age. To accomplish that objective, a systematic morphometric and incidental study of the UBF has been carried out in 110 Wistar rats of different ages and both sexes, divided into three groups: 1) young rats (5-90-day-old); 2) adult rats (6-15-month-old), and 3) old rats (18-24-month-old). The glands were serially sectioned and immunostained for calcitonin at five equidistant levels. According to our results, UBFs were observed in all thyroid glands but a more exhaustive sampling was occasionally necessary in male rats. In young rats, immature UBFs predominantly appeared whereas in adult rats, mature UBFs with cystic appearance and variable luminal content prevailed. We frequently found spontaneous anomalous UBFs in old rats, which we have termed as "ultimobranchial cystadenomata." Additionally, in young rats, UBF areas significantly increased with age and they were larger when compared to that of normal thyroid follicles. Likewise, in adult rats, UBFs were significantly larger than normal thyroid follicles but only in female rats. In general, UBFs in females were also significantly larger than those found in male rats. Finally, all these differences related to UBFs together with a higher incidence in females of UB cystadenomata suggest a sexual dimorphism in regard to the destiny of these embryonic remnants during postnatal thyroid development.
Asunto(s)
Ratas Wistar/anatomía & histología , Ratas Wistar/crecimiento & desarrollo , Glándula Tiroides/anatomía & histología , Glándula Tiroides/crecimiento & desarrollo , Cuerpo Ultimobranquial/anatomía & histología , Envejecimiento , Animales , Femenino , Masculino , Ratas , Caracteres SexualesRESUMEN
OBJECTIVE: To analyze the presence of SDHD gene mutations in patients with sporadic head and neck paraganglioma. STUDY DESIGN: The presence of somatic and germline SDHD mutations was investigated in 10 patients by polymerase chain reaction and direct sequencing. RESULTS: Two patients displayed mutations: 259C>T (P87S) in 1 case and 129G>A (W43X) in the other. The first was considered a neutral polymorphism. The second was present in the germline of 1 of her sons, who had an apparently unrelated testicular seminoma and loss of heterozygosity (LOH) in the tumor cells. CONCLUSION: This is the first reported case of an SDHD mutation carrier showing LOH in a testicular seminoma.
Asunto(s)
Neoplasias de Cabeza y Cuello/genética , Mutación , Paraganglioma/genética , Succinato Deshidrogenasa/genética , Adulto , Secuencia de Bases , Análisis Mutacional de ADN , Humanos , Pérdida de Heterocigocidad , Persona de Mediana Edad , Datos de Secuencia MolecularRESUMEN
Septic shock, the most severe problem of sepsis, is a lethal condition caused by the interaction of a pathogen-induced long chain of sequential intracellular events in immune cells, epithelium, endothelium, and the neuroendocrine system. The lethal effects of septic shock are associated with the production and release of numerous pro-inflammatory biochemical mediators including cytokines, nitric oxide and toxic oxygen and nitrogen radicals, together with development of massive apoptosis. As melatonin has remarkable properties as a cytokine modulator, antioxidant and anti-apoptotic agent, the present study was designed to evaluate the possible protective effect of melatonin against LPS-induced septic shock in Swiss mice. We observed that intraperitoneally (i.p.) administered-melatonin (10 mg/kg) 30 min prior, and 1 hr after i.p. LPS injection (0.75 mg/animal) markedly protected mice from the LPS lethal effects with 90% survival rates for melatonin and 20% for LPS-injected mice after 72 hr. The melatonin effect was mediated by modulating the release of pro-/anti-inflammatory cytokine levels, protection from oxidative damage and counteracting apoptotic cell death. Melatonin was able to partially counteract the increase in LPS-induced pro-inflammatory cytokine levels such as tumor necrosis factor-alpha, IL-12 and interferon-gamma at the local site of injection, while it increased the production of the anti-inflammatory cytokine IL-10 both locally and systemically. Furthermore, melatonin inhibited the LPS-induced nitrite/nitrate and lipid peroxidation levels in brain and liver and counteracted the sepsis-associated apoptotic process in spleen. In conclusion, we have demonstrated that melatonin improves the survival of mice with septic shock via its pleiotropic functions as an immunomodulator, antioxidant and anti-apoptotic mediator.
Asunto(s)
Citocinas/biosíntesis , Modelos Animales de Enfermedad , Melatonina/farmacología , Choque Séptico/fisiopatología , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Interferón gamma/biosíntesis , Interleucinas/biosíntesis , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Óxido Nítrico/análisis , Choque Séptico/prevención & control , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
The aim of this study was to determine the effects of melatonin on proinflammatory status of rats with collagen-induced arthritis (CIA). CIA was induced in male Wistar rats with an emulsion of type II collagen in Freund's Incomplete Adjuvant (C-II/FIA). For 14 days, control and pinealectomized rats received a subcutaneous injection of 100 microL melatonin (30 microg) or vehicle (saline on 1% ethanol). Levels of cytokines interleukin (IL)-1beta and IL-6 were determined in the serum, peripheral blood mononuclear cells, and joints. Levels of anti-type II collagen antibody, nitrite/nitrate, and lipid peroxidation (LPO) were determined in the serum, joints, and brain. Treatment with melatonin significantly increased the levels of IL-1beta, IL-6, nitrite/nitrate and LPO in joints. However, melatonin significantly reduced the levels of nitrite/nitrate and LPO in serum and brain. Moreover, CIA in pinealectomized rats presented significantly reduced levels of IL-1beta and IL-6, titers of anti-type II collagen antibodies, levels of nitrite/nitrate, and LPO in joints but elevated levels in serum and brain. Melatonin has been described as a proinflammatory and antioxidant agent. In a process of inflammation as CIA, melatonin acts with a markedly proinflammatory effect at local and peripheral levels maintaining its antioxidant effect only at peripheral level.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antioxidantes/farmacología , Artritis Experimental/metabolismo , Melatonina/farmacología , Animales , Artritis Experimental/tratamiento farmacológico , Colágeno Tipo II/inmunología , Extremidades/patología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Articulaciones/patología , Masculino , Ratas , Ratas WistarRESUMEN
This study was designed to investigate the effect of melatonin on the fatty acid composition of plasma and tissue lipids. Melatonin administration to rats fed with a standard diet only increased long-chain n-6 polyunsaturated fatty acids (PUFA) in total plasma lipids and liver phospholipids but induced significant changes in hypercholesterolemic rats. In plasma, palmitoleic and oleic acids increased and n-6 and n-3 PUFA decreased in hypercholesterolemic rats; theses changes were reversed by melatonin administration. The analysis of lipid fractions revealed that only the cholesteryl ester fraction was affected by melatonin. Histological studies of the carotid artery intima revealed the appearance, in hypercholesterolemic rats, of fatty streaks produced by a mass of foam cells covered by the endothelium and by a thin layer of mononucleated cells. These changes were prevented by melatonin. We conclude that long-term melatonin administration modifies the fatty acid composition of rat plasma and liver lipids and ameliorates the arterial fatty infiltration induced by cholesterol.