Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cardiology ; 146(2): 144-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33326980

RESUMEN

The radial artery is the preferred access site for cardiac catheterization because of patient comfort, early ambulation, and improved survival in acute coronary syndromes, when compared to the femoral artery route. However, it is associated with a high radial artery occlusion (RAO) rate, and patent haemostasis which can reduce this is extremely hard to implement in a busy clinical practice. Smaller sized sheaths are associated with less RAO but are uncommonly used as they could limit procedural prowess and complexity. Alternatively, the distal radial artery (dRA) approach appears to be safer with observed RAO rates of well under 1 percent without compromising benefits offered by the radial artery access. Default dRA can be accessed by palpation alone in most cases with some practice, and this can be improved further with ultrasound guidance. There is a subset of patients, especially in the elderly, where dRA access can be particularly challenging. To mitigate this, we propose a two-step cannulation strategy and illustrate this with a few cases with difficult dRA and radial artery anatomies.


Asunto(s)
Síndrome Coronario Agudo , Arteriopatías Oclusivas , Intervención Coronaria Percutánea , Anciano , Cateterismo Cardíaco , Angiografía Coronaria , Humanos , Arteria Radial/diagnóstico por imagen , Arteria Radial/cirugía , Resultado del Tratamiento , Ultrasonografía
2.
J Cardiovasc Electrophysiol ; 29(11): 1471-1479, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230101

RESUMEN

OBJECTIVE: We tested whether ablation methodology and study design can explain the varying outcomes in terms of atrial fibrillation (AF)-free survival at 1 year. BACKGROUND: There have been numerous paroxysmal AF ablation trials, which are heterogeneous in their use of different ablation techniques and study design. A useful approach to understanding how these factors influence outcome is to dismantle the trials into individual arms and reconstitute them as a large meta-regression. METHODS: Data were collected from 66 studies (6941 patients). With freedom from AF as the dependent variable, we performed meta-regression using the individual study arm as the unit. RESULTS: Success rates did not change regardless of the technique used to produce pulmonary vein isolation (PVI). Neither was adjunctive lesion sets associated with any improvement in outcome. Studies that included more males and fewer hypertensive patients were found more likely to report better outcomes. The electrocardiography method selected to assess outcome also plays an important role. Outcomes were worse in studies that used regular telemonitoring (by 23%; P < 0.001) or in patients who had implantable loop recorders (by 21%; P = 0.006), rather than those with the less thorough periodic Holter monitoring. CONCLUSIONS: Outcomes of AF ablation studies involving PVI are not affected by the technologies used to produce PVI. Neither do adjunctive lesion sets change the outcome. Achieving high success rates in these studies appears to be dependent more on patient mix and on the thoroughness of AF detection protocols. These should be carefully considered when quoting the success rates of AF ablation procedures that are derived from such studies.


Asunto(s)
Técnicas de Ablación/métodos , Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Técnicas de Ablación/tendencias , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/mortalidad , Ablación por Catéter/tendencias , Humanos , Selección de Paciente , Tasa de Supervivencia/tendencias , Resultado del Tratamiento
3.
Circulation ; 128(12): 1286-97, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23983250

RESUMEN

BACKGROUND: Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling, enhancing myocyte performance, and potentially favoring an increase in the incidence of arrhythmias. METHODS AND RESULTS: IP3R function was determined in human left ventricular myocytes, and this analysis was integrated with assays in mouse myocytes to identify the mechanisms by which IP3Rs influence the electric and mechanical properties of the myocardium. We report that IP3Rs are expressed and operative in human left ventricular myocytes. After Gαq-protein-coupled receptor activation, Ca(2+) mobilized from the sarcoplasmic reticulum via IP3Rs contributes to the decrease in resting membrane potential, prolongation of the action potential, and occurrence of early afterdepolarizations. Ca(2+) transient amplitude and cell shortening are enhanced, and extrasystolic and dysregulated Ca(2+) elevations and contractions become apparent. These alterations in the electromechanical behavior of human cardiomyocytes are coupled with increased isometric twitch of the myocardium and arrhythmic events, suggesting that Gαq-protein-coupled receptor activation provides inotropic reserve, which is hampered by electric instability and contractile abnormalities. Additionally, our findings support the notion that increases in Ca(2+) load by IP3Rs promote Ca(2+) extrusion by forward-mode Na(+)/Ca(2+) exchange, an important mechanism of arrhythmic events. CONCLUSIONS: The Gαq-protein/coupled receptor/IP3R axis modulates the electromechanical properties of the human myocardium and its propensity to develop arrhythmias.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Insuficiencia Cardíaca/fisiopatología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Miocitos Cardíacos/fisiología , Adulto , Animales , Arritmias Cardíacas/fisiopatología , Células Cultivadas , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/citología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , Transducción de Señal/fisiología
4.
N Engl J Med ; 364(19): 1795-806, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21561345

RESUMEN

BACKGROUND: Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS: Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS: Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS: Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).


Asunto(s)
Pulmón/citología , Células Madre/fisiología , Adulto , Animales , Células Clonales , Femenino , Humanos , Pulmón/embriología , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes , Proteínas Proto-Oncogénicas c-kit/análisis , Regeneración , Trasplante de Células Madre , Células Madre/química
5.
Circ Res ; 111(7): 894-906, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22851539

RESUMEN

RATIONALE: According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE: Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS: Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS: The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.


Asunto(s)
Cromátides/fisiología , Segregación Cromosómica/fisiología , Corazón/fisiología , Infarto del Miocardio/terapia , Miocardio/citología , Regeneración/fisiología , Trasplante de Células Madre , Células Madre/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bromodesoxiuridina , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Cromátides/ultraestructura , ADN/fisiología , Femenino , Humanos , Técnicas In Vitro , Lactante , Masculino , Persona de Mediana Edad , Modelos Animales , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas F344 , Células Madre/fisiología , Telómero/ultraestructura , Adulto Joven
6.
Circ Res ; 110(5): 701-15, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22275487

RESUMEN

RATIONALE: Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE: In this study, we tested whether prenatal cardiac development is controlled by activation and differentiation of CSCs and whether division of c-kit-positive CSCs in the mouse heart is triggered by spontaneous Ca(2+) oscillations. METHODS AND RESULTS: We report that embryonic-fetal c-kit-positive CSCs are self-renewing, clonogenic and multipotent in vitro and in vivo. The growth and commitment of c-kit-positive CSCs is responsible for the generation of the myocyte progeny of the developing heart. The close correspondence between values computed by mathematical modeling and direct measurements of myocyte number at E9, E14, E19 and 1 day after birth strongly suggests that the organogenesis of the embryonic heart is dependent on a hierarchical model of cell differentiation regulated by resident CSCs. The growth promoting effects of c-kit-positive CSCs are triggered by spontaneous oscillations in intracellular Ca(2+), mediated by IP3 receptor activation, which condition asymmetrical stem cell division and myocyte lineage specification. CONCLUSIONS: Myocyte formation derived from CSC differentiation is the major determinant of cardiac growth during development. Division of c-kit-positive CSCs in the mouse is promoted by spontaneous Ca(2+) spikes, which dictate the pattern of stem cell replication and the generation of a myocyte progeny at all phases of prenatal life and up to one day after birth.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Corazón/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Células Cultivadas , Técnicas de Cultivo de Embriones , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Modelos Teóricos , Organogénesis/fisiología , Proteínas Proto-Oncogénicas c-kit/genética
7.
Circulation ; 126(15): 1869-81, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22955965

RESUMEN

BACKGROUND: Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. METHODS AND RESULTS: The average age of cardiomyocytes, vascular endothelial cells (ECs), and fibroblasts and their turnover rates were measured by retrospective (14)C birth dating of cells in 19 normal hearts 2 to 78 years of age and in 17 explanted failing hearts 22 to 70 years of age. We report that the human heart is characterized by a significant turnover of ventricular myocytes, ECs, and fibroblasts, physiologically and pathologically. Myocyte, EC, and fibroblast renewal is very high shortly after birth, decreases during postnatal maturation, remains relatively constant in the adult organ, and increases dramatically with age. From 20 to 78 years of age, the adult human heart entirely replaces its myocyte, EC, and fibroblast compartment ≈8, ≈6, and ≈8 times, respectively. Myocyte, EC, and fibroblast regeneration is further enhanced with chronic heart failure. CONCLUSIONS: The human heart is a highly dynamic organ that retains a remarkable degree of plasticity throughout life and in the presence of chronic heart failure. However, the ability to regenerate cardiomyocytes, vascular ECs, and fibroblasts cannot prevent the manifestations of myocardial aging or oppose the negative effects of ischemic and idiopathic dilated cardiomyopathy.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Desarrollo de Músculos/fisiología , Miocitos Cardíacos/fisiología , Adolescente , Adulto , Anciano , Envejecimiento , Niño , Preescolar , Células Endoteliales/fisiología , Fibroblastos/fisiología , Corazón/fisiología , Humanos , Persona de Mediana Edad , Miocitos Cardíacos/citología , Regeneración , Donantes de Tejidos , Adulto Joven
8.
Circ Res ; 108(9): 1071-83, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21415392

RESUMEN

RATIONALE: Understanding the mechanisms that regulate trafficking of human cardiac stem cells (hCSCs) may lead to development of new therapeutic approaches for the failing heart. OBJECTIVE: We tested whether the motility of hCSCs in immunosuppressed infarcted animals is controlled by the guidance system that involves the interaction of Eph receptors with ephrin ligands. METHODS AND RESULTS: Within the cardiac niches, cardiomyocytes expressed preferentially the ephrin A1 ligand, whereas hCSCs possessed the EphA2 receptor. Treatment of hCSCs with ephrin A1 resulted in the rapid internalization of the ephrin A1-EphA2 complex, posttranslational modifications of Src kinases, and morphological changes consistent with the acquisition of a motile cell phenotype. Ephrin A1 enhanced the motility of hCSCs in vitro, and their migration in vivo following acute myocardial infarction. At 2 weeks after infarction, the volume of the regenerated myocardium was 2-fold larger in animals injected with ephrin A1-activated hCSCs than in animals receiving control hCSCs; this difference was dictated by a greater number of newly formed cardiomyocytes and coronary vessels. The increased recovery in myocardial mass with ephrin A1-treated hCSCs was characterized by further restoration of cardiac function and by a reduction in arrhythmic events. CONCLUSIONS: Ephrin A1 promotes the motility of EphA2-positive hCSCs, facilitates their migration to the area of damage, and enhances cardiac repair. Thus, in situ stimulation of resident hCSCs with ephrin A1 or their ex vivo activation before myocardial delivery improves cell targeting to sites of injury, possibly providing a novel strategy for the management of the diseased heart.


Asunto(s)
Efrina-A1/genética , Efrina-A2/genética , Células Madre Hematopoyéticas/citología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Animales , Adhesión Celular/fisiología , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Citoplasma/metabolismo , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Ratas , Ratas Endogámicas F344 , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/terapia
9.
Circ Res ; 108(12): 1467-81, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21546606

RESUMEN

RATIONALE: Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. OBJECTIVE: Insulin-like growth factor (IGF)-1, IGF-2, and angiotensin II (Ang II), as well as their receptors, IGF-1R, IGF-2R, and AT1R, were characterized in c-kit(+) hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. METHODS AND RESULTS: C-kit(+) hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation, and attenuated apoptosis. In addition to IGF-1, IGF-1R(+) hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R(+) hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit(+) hCSCs. IGF-1R(+) hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R(+) hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. CONCLUSIONS: hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage, and myocyte differentiation, which points to this hCSC subset as the ideal candidate cell for the management of human heart failure.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor IGF Tipo 1/metabolismo , Regeneración , Células Madre/metabolismo , Angiotensina II/metabolismo , Diferenciación Celular , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/terapia , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/patología , Miocitos Cardíacos/patología , Receptor IGF Tipo 2/metabolismo , Trasplante de Células Madre , Células Madre/patología , Trasplante Autólogo
10.
Circulation ; 123(12): 1287-96, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21403094

RESUMEN

BACKGROUND: Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. METHODS AND RESULTS: On the basis of results of in vitro and in vivo assays, we report that the commitment of human CSCs (hCSCs) to the myocyte lineage and the generation of mature working cardiomyocytes are influenced by microRNA-499 (miR-499), which is barely detectable in hCSCs but is highly expressed in postmitotic human cardiomyocytes. miR-499 traverses gap junction channels and translocates to structurally coupled hCSCs favoring their differentiation into functionally competent cells. Expression of miR-499 in hCSCs represses the miR-499 target genes Sox6 and Rod1, enhancing cardiomyogenesis in vitro and after infarction in vivo. Although cardiac repair was detected in all cell-treated infarcted hearts, the aggregate volume of the regenerated myocyte mass and myocyte cell volume were greater in animals injected with hCSCs overexpressing miR-499. Treatment with hCSCs resulted in an improvement in ventricular function, consisting of a better preservation of developed pressure and positive and negative dP/dt after infarction. An additional positive effect on cardiac performance occurred with miR-499, pointing to enhanced myocyte differentiation/hypertrophy as the mechanism by which miR-499 potentiated the restoration of myocardial mass and function in the infarcted heart. CONCLUSIONS: The recognition that miR-499 promotes the differentiation of hCSCs into mechanically integrated cardiomyocytes has important clinical implications for the treatment of human heart failure.


Asunto(s)
Células Madre Adultas/citología , MicroARNs/fisiología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Trasplante de Células Madre , Células Madre Adultas/fisiología , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Uniones Comunicantes/fisiología , Expresión Génica/fisiología , Humanos , Infarto del Miocardio/patología , Miocitos Cardíacos/fisiología , Proteína de Unión al Tracto de Polipirimidina , Proteínas de Unión al ARN/genética , Ratas , Regeneración/fisiología , Factores de Transcripción SOXD/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA