Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 19-23, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164928

RESUMEN

The bismuth hydride (2,6-Mes2H3C6)2BiH (1, Mes = 2,4,6-trimethylphenyl), which has a Bi-H 1H NMR spectroscopic signal at δ = 19.64 ppm, was reacted with phenylacetylene at 60 °C in toluene to yield [(2,6-Mes2C6H3)2BiC(Ph)=CH2] (2) after 15 min. Compound 2 was characterized by 1H, 13C NMR, and UV-vis spectroscopy, single crystal X-ray crystallography, and calculations employing density functional theory. Compound 2 is the first example of a hydrobismuthation addition product and displays Markovnikov regioselectivity. Computational methods indicated that it forms via a radical mechanism with an associated Gibbs energy of activation of 91 kJ mol-1 and a reaction energy of -90 kJ mol-1.

2.
Inorg Chem ; 63(28): 12752-12763, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953682

RESUMEN

We report the ability to trap the dimer Au2(µ-dppe)2I2 (dppe is 1,2-bis(diphenylphosphino)ethane) with different separations between the three-coordinate gold ions in crystalline solvates. All of these solvates ((Au2(µ-dppe)2I2·4(CH2Cl2) (1), Au2(µ-dppe)2I2·2(CH2Cl2) (2), the polymorphs α-Au2(µ-dppe)2I2·2(HC(O)NMe2) (3) and ß-Au2(µ-dppe)2I2·2(HC(O)NMe2) (4), and Au2(µ-dppe)2I2·4(CHCl3) (5)) along with polymeric {Au(µ-dppe)I}n·n(CHCl3) (6)) originated from the same reaction, only the solvent system used for crystallization differed. In the different solvates of Au2(µ-dppe)2I2, the Au···Au separation varied from 3.192(1) to 3.7866(3) Å. Computational studies undertaken to understand the flexible nature of these dimers indicated that the structural differences were primarily a result of crystal packing effects with aurophillic interactions having a minimal effect.

3.
Angew Chem Int Ed Engl ; 63(34): e202407114, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38719740

RESUMEN

Herein we report the first transition metal-catalyzed approach to the enantioenriched synthesis of cyclic sulfonimidamides relying on commercially available palladium catalysts and ligands. High-throughput experimentation (HTE) was employed to identify the optimal catalyst system and solvent. The method is applied to a variety of saturated and unsaturated rings and exhibits the highest selectivity for 2-substituted allyl electrophiles. The products are further elaborated to complex, tricyclic scaffolds. DFT experiments presented herein highlight the key ligand substrate interactions leading to the high levels of enantioselectivity.

4.
Angew Chem Int Ed Engl ; 63(19): e202319930, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38237059

RESUMEN

The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.

5.
ACS Catal ; 14(2): 1005-1012, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38269039

RESUMEN

We report the organocatalytic synthesis of Si-stereogenic compounds via desymmetrization of a prochiral silanediol with a chiral imidazole-containing catalyst. This metal-free silylation method affords high yields with enantioselectivity up to 98:2 for various silanediol and silyl chloride substrate combinations (including secondary alkyl, vinyl, and H groups), accessing products with potential for further elaboration. NMR and X-ray studies reveal insight into the H-bonding interactions between the imidazole organocatalyst and the silanediol and the dual activating role of the Lewis basic imidazole to account for the high enantioselectivity.

6.
ACS Catal ; 14(1): 104-115, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205021

RESUMEN

Interactions between catalysts and substrates can be highly complex and dynamic, often complicating the development of models to either predict or understand such processes. A dirhodium(II)-catalyzed C-H insertion of donor/donor carbenes into 2-alkoxybenzophenone substrates to form benzodihydrofurans was selected as a model system to explore nonlinear methods to achieve a mechanistic understanding. We found that the application of traditional methods of multivariate linear regression (MLR) correlating DFT-derived descriptors of catalysts and substrates leads to poorly performing models. This inspired the introduction of nonlinear descriptor relationships into modeling by applying the sure independence screening and sparsifying operator (SISSO) algorithm. Based on SISSO-generated descriptors, a high-performing MLR model was identified that predicts external validation points well. Mechanistic interpretation was aided by the deconstruction of feature relationships using chemical space maps, decision trees, and linear descriptors. Substrates were found to have a strong dependence on steric effects for determining their innate cyclization selectivity preferences. Catalyst reactive site features can then be matched to product features to tune or override the resultant diastereoselectivity within the substrate-dictated ranges. This case study presents a method for understanding complex interactions often encountered in catalysis by using nonlinear modeling methods and linear deconvolution by pattern recognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA