Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 72(6): 955-969.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576657

RESUMEN

The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , ARN no Traducido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN de Hongos/genética , ARN Mensajero/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética
2.
Nucleic Acids Res ; 48(5): 2312-2331, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32020195

RESUMEN

Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


Asunto(s)
Codón Iniciador/química , Cryptococcus/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Iniciación de la Cadena Peptídica Traduccional , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Mapeo Cromosómico , Codón Iniciador/metabolismo , Cryptococcus/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidad de la Especie
3.
EMBO J ; 31(10): 2427-37, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22505027

RESUMEN

RNA Pol II transcription termination can occur by at least two alternative pathways. Cleavage and polyadenylation by the CPF/CF complex precedes mRNA transcription termination, while the Nrd1 complex is involved in transcription termination of non-coding RNAs such as sno/snRNAs or cryptic unstable transcripts. Here we show that transcription of RPL9B, one of the two genes coding for the ribosomal protein Rpl9p, terminates by either of these two pathways. The balance between these two pathways is modulated in response to the RPL9 gene copy number, resulting in the autoregulation of RPL9B gene expression. This autoregulation mechanism requires a conserved potential stem-loop structure very close to the polyadenylation sites. We propose a model in which Rpl9p, when in excess, binds this conserved 3'-UTR structure, negatively interfering with cleavage and polyadenylation to the benefit of the Nrd1-dependent termination pathway, which, being coupled to degradation by the nuclear exosome, results in downregulation of RPL9B gene expression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Ribosómicas/biosíntesis , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Secuencia de Bases , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética
4.
Nat Cell Biol ; 4(3): 214-21, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11862215

RESUMEN

Recent experiments have shown that gene repression can be correlated with relocation of genes to heterochromatin-rich silent domains. Here, we investigate whether nuclear architecture and spatial positioning can contribute directly to the transcriptional activity of a genetic locus in Saccharomyces cerevisiae. By disassembling telomeric silent domains without altering the chromatin-mediated silencing machinery, we show that the transcriptional activity of silencer--reporter constructs depends on intranuclear position. This demonstrates that telomeric silent domains are actively involved in transcriptional silencing. Employing fluorescent in situ hybridization (FISH) in combination with genetic assays, we demonstrate that telomeres control the establishment of transcriptional states by reversible partitioning with the perinuclear silencing domains. Anchoring telomeres interferes with their ability to assume an active state, whereas disassembly of silencing domains prevents telomeres from assuming a repressed state. Our data support a model in which domains of enriched transcriptional regulators allow genes to determine transcriptional states by spatial positioning.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Genes Fúngicos , Genes Reporteros , Hibridación Fluorescente in Situ , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transcripción Genética , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
5.
Elife ; 42015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25905671

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Codón sin Sentido , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitio de Iniciación de la Transcripción
6.
Cell Rep ; 6(4): 593-8, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24529707

RESUMEN

Nonsense-mediated mRNA decay (NMD) destabilizes eukaryotic transcripts with long 3' UTRs. To investigate whether other transcript features affect NMD, we generated yeast strains expressing chromosomal-derived mRNAs with 979 different promoter and open reading frame (ORF) regions and with the same long, destabilizing 3' UTR. We developed a barcode-based DNA microarray strategy to compare the levels of each reporter mRNA in strains with or without active NMD. The size of the coding region had a significant negative effect on NMD efficiency. This effect was not specific to the tested 3' UTR because two other different NMD reporters became less sensitive to NMD when ORF length was increased. Inefficient NMD was not due to a lack of association of Upf1 to long ORF transcripts. In conclusion, in addition to a long 3' UTR, short translation length is an important feature of NMD substrates in yeast.


Asunto(s)
Regiones no Traducidas 3' , Degradación de ARNm Mediada por Codón sin Sentido , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Plant Cell ; 14(3): 629-39, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11910010

RESUMEN

Transgene-induced post-transcriptional gene silencing (PTGS) results from specific degradation of RNAs that are homologous with the transgene transcribed sequence. This phenomenon, also known as cosuppression in plants and quelling in fungi, resembles RNA interference (RNAi) in animals. Indeed, cosuppression/quelling/RNAi require related PAZ/PIWI proteins (AGO1/QDE-2/RDE-1), indicating that these mechanisms are related. Unlike Neurospora crassa qde-2 and Caenorhabditis elegans rde-1 mutants, which are morphologically normal, the 24 known Arabidopsis ago1 mutants display severe developmental abnormalities and are sterile. Here, we report the isolation of hypomorphic ago1 mutants, including fertile ones. We show that these hypomorphic ago1 mutants are defective for PTGS, like null sgs2, sgs3, and ago1 mutants, suggesting that PTGS is more sensitive than development to perturbations in AGO1. Conversely, a mutation in ZWILLE/PINHEAD, another member of the Arabidopsis AGO1 gene family, affects development but not PTGS. Similarly, mutations in ALG-1 and ALG-2, two members of the C. elegans RDE-1 gene family, affect development but not RNAi, indicating that the control of PTGS/RNAi and development by PAZ/PIWI proteins can be uncoupled. Finally, we show that hypomorphic ago1 mutants are hypersensitive to virus infection, confirming the hypothesis that in plants PTGS is a mechanism of defense against viruses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Silenciador del Gen , Proteínas de Plantas/genética , Virus de Plantas/crecimiento & desarrollo , Alelos , Secuencia de Aminoácidos , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/virología , Proteínas Argonautas , Mapeo Cromosómico , Cucumovirus/crecimiento & desarrollo , Fertilidad/genética , Inmunidad Innata , Datos de Secuencia Molecular , Mutación , Procesamiento Postranscripcional del ARN , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA