Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(18): 11289-11298, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418047

RESUMEN

Collisional quenching of NO A2Σ+ (v = 0, 1) by O2 has been studied through the detection of vibrationally excited products by time-resolved Fourier transform infrared emission spectroscopy. Non-reactive quenching of NO A2Σ+ (v = 0) produces a vibrational distribution in NO X2Π which has been quantified for v = 2-22, and is found to be bimodal. The results are consistent with two quenching channels. The first forms the ground X3Σ or low-lying a 1Δg electronic state of O2 with a distribution including high vibrational levels of NO X2Π which is slightly hotter than statistical. Two possibilities are identified for the second channel. The first, with a similar quantum yield to that producing higher vibrational levels, forms a highly electronically excited state, such as O2 c1Σ, with low vibrational levels in NO X2Π which are inverted with a distribution resembling that resulting from a sudden or harpoon mechanism. The second is that ground state oxygen is formed with low vibrational energy partitioned into NO X2Π. In addition, vibrationally excited NO2 is observed, but at intensities which indicate that it is formed in low quantum yield. Quantitatively unobservable processes (defined as those which do not form ground state NO (v ≥ 2)) are found to have a branching ratio of at most 25 ± 5%. The results are compared with those of previous studies and the most consistent interpretation suggests that dissociation of O2 to form ground state O(3P) atoms and ground vibrational state NO X2Π (v = 0) is the main reactive process rather than NO2 formation. Qualitatively similar results are seen for the quenching of NO A2Σ+ (v = 1).

2.
Phys Chem Chem Phys ; 16(22): 11047-53, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24777304

RESUMEN

The quenching rates of NO (A(2)Σ(+), v = 0) with He, Ne, Ar, Kr and Xe have been studied at room temperature by measurements of the time dependence of the fluorescence decay following laser excitation. The rates are slow, with upper limits of rate constants determined as between 1.2 and 2.0 × 10(-14) cm(3) molecule(-1) s(-1), considerably lower than those reported before in the literature. Such slow rates can be markedly influenced by impurities such as O2 and H2O which have quenching rate constants close to gas kinetic values. Time resolved Fourier transform infrared emission has been used to observe the products of the quenching processes with the rare gases and with impurities. For He, Ne Ar and Kr there is no difference within experimental error of the populations in NO (X(2)Π v ≥ 2) produced with and without rare gas present, but the low quantum yields of such quenching (of the order of 5% for an atmosphere of rare gas) preclude quantitative information on the quantum states being obtained. For quenching by Xe the collisional formation of electronically excited Xe atoms dominates the emission at early times. Vibrationally excited NO (X(2)Π, v) and products of reactive quenching are observed in the presence of O2 and H2O.

3.
Phys Chem Chem Phys ; 15(7): 2554-64, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23296078

RESUMEN

Collisional quenching of NO A (2)Σ(+) (v = 0) by N(2)O and CO(2) has been studied through measurements of vibrationally excited products by time resolved Fourier transform infrared emission. In both cases vibrationally excited NO X (2)Π (v) is seen and quantified in levels v≥ 2 with distributions which are close to statistical. However the quantum yields to produce these levels are markedly different for the two quenchers. For CO(2) such quenching accounts for only ca. 26% of the total: for N(2)O it is ca. 85%. Far more energy is seen in the internal modes of the CO(2) product than those of N(2)O. The results are rationalised in terms of cleavage of the N(2)-O bond being dominant in the latter case, with either a similar O atom production or a specific channel producing almost exclusively NO in low vibrational levels (v = 0,1) for quenching by CO(2). Minor reactive channels yielding NO(2) are seen in both cases, and O((1)D) is observed with low quantum yield in the reaction with N(2)O. The results are discussed in terms of previous models of the quenching processes, and are consistent with the very high yield of NO X (2)Π (v = 0) previously observed by laser induced fluorescence for quenching of NO A (2)Σ(+) (v = 0) by CO(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA