Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148993

RESUMEN

We previously reported that loss of mitochondrial transcription factor B1 (TFB1M) leads to mitochondrial dysfunction and is involved in the pathogenesis of type 2 diabetes (T2D). Whether defects in ribosomal processing impact mitochondrial function and could play a pathogenetic role in ß-cells and T2D is not known. To this end, we explored expression and the functional role of dimethyladenosine transferase 1 homolog (DIMT1), a homolog of TFB1M and a ribosomal RNA (rRNA) methyltransferase implicated in the control of rRNA. Expression of DIMT1 was increased in human islets from T2D donors and correlated positively with expression of insulin mRNA, but negatively with insulin secretion. We show that silencing of DIMT1 in insulin-secreting cells impacted mitochondrial function, leading to lower expression of mitochondrial OXPHOS proteins, reduced oxygen consumption rate, dissipated mitochondrial membrane potential, and a slower rate of ATP production. In addition, the rate of protein synthesis was retarded upon DIMT1 deficiency. Consequently, we found that DIMT1 deficiency led to perturbed insulin secretion in rodent cell lines and islets, as well as in a human ß-cell line. We observed defects in rRNA processing and reduced interactions between NIN1 (RPN12) binding protein 1 homolog (NOB-1) and pescadillo ribosomal biogenesis factor 1 (PES-1), critical ribosomal subunit RNA proteins, the dysfunction of which may play a part in disturbing protein synthesis in ß-cells. In conclusion, DIMT1 deficiency perturbs protein synthesis, resulting in mitochondrial dysfunction and disrupted insulin secretion, both potential pathogenetic processes in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Metiltransferasas , Mitocondrias , Ribosomas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transferasas/metabolismo
2.
J Neuroinflammation ; 18(1): 175, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376193

RESUMEN

BACKGROUND: Diabetes has been recognized as a risk factor contributing to the incidence and progression of Parkinson's disease (PD). Although several hypotheses suggest a number of different mechanisms underlying the aggravation of PD caused by diabetes, less attention has been paid to the fact that diabetes and PD share pathological microvascular alterations in the brain. The characteristics of the interaction of diabetes in combination with PD at the vascular interface are currently not known. METHODS: We combined a high-fat diet (HFD) model of diabetes mellitus type 2 (DMT2) with the 6-OHDA lesion model of PD in male mice. We analyzed the association between insulin resistance and the achieved degree of dopaminergic nigrostriatal pathology. We further assessed the impact of the interaction of the two pathologies on motor deficits using a battery of behavioral tests and on microglial activation using immunohistochemistry. Vascular pathology was investigated histologically by analyzing vessel density and branching points, pericyte density, blood-brain barrier leakage, and the interaction between microvessels and microglia in the striatum. RESULTS: Different degrees of PD lesion were obtained resulting in moderate and severe dopaminergic cell loss. Even though the HFD paradigm did not affect the degree of nigrostriatal lesion in the acute toxin-induced PD model used, we observed a partial aggravation of the motor performance of parkinsonian mice by the diet. Importantly, the combination of a moderate PD pathology and HFD resulted in a significant pericyte depletion, an absence of an angiogenic response, and a significant reduction in microglia/vascular interaction pointing to an aggravation of vascular pathology. CONCLUSION: This study provides the first evidence for an interaction of DMT2 and PD at the brain microvasculature involving changes in the interaction of microglia with microvessels. These pathological changes may contribute to the pathological mechanisms underlying the accelerated progression of PD when associated with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Neuronas Dopaminérgicas/metabolismo , Microglía/patología , Enfermedad de Parkinson Secundaria/patología , Pericitos/patología , Anfetamina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo
3.
Diabetologia ; 63(11): 2372-2384, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32676816

RESUMEN

AIM/HYPOTHESIS: Human enteroviral infections are suggested to be associated with type 1 diabetes. However, the mechanism by which enteroviruses can trigger disease remains unknown. The present study aims to investigate the impact of enterovirus on autophagy, a cellular process that regulates beta cell homeostasis, using the clonal beta cell line INS(832/13) and human islet cells as in vitro models. METHODS: INS(832/13) cells and human islet cells were infected with a strain of echovirus 16 (E16), originally isolated from the stool of a child who developed type 1 diabetes-associated autoantibodies. Virus production and release was determined by 50% cell culture infectious dose (CCID50) assay and FACS analysis. The occurrence of autophagy, autophagosomes, lysosomes and autolysosomes was detected by western blot, baculoviral-mediated expression of microtubule-associated protein light chain 3 (LC3)II-GFP and LysoTracker Red, and quantified by Cellomics ArrayScan. Autophagy was also monitored with a Cyto-ID detection kit. Nutrient deprivation (low glucose [2.8 mmol/l]), amino acid starvation (Earle's Balanced Salt Solution [EBSS]) and autophagy-modifying agents (rapamycin and chloroquine) were used in control experiments. Insulin secretion and the expression of autophagy-related (Atg) genes and genes involved in autophagosome-lysosome fusion were determined. RESULTS: E16-infected INS(832/13) cells displayed an accumulation of autophagosomes, compared with non-treated (NT) cells (grown in complete RPMI1640 containing 11.1 mmol/l glucose) (32.1 ± 1.7 vs 21.0 ± 1.2 µm2/cell; p = 0.05). This was accompanied by increased LC3II ratio both in E16-infected cells grown in low glucose (LG) (2.8 mmol/l) (0.42 ± 0.03 vs 0.11 ± 0.04 (arbitrary units [a.u.]); p < 0.0001) and grown in media containing 11.1 mmol/l glucose (0.37 ± 0.016 vs 0.05 ± 0.02 (a.u.); p < 0.0001). Additionally, p62 accumulated in cells after E16 infection when grown in LG (1.23 ± 0.31 vs 0.36 ± 0.12 (a.u.); p = 0.012) and grown in media containing 11.1 mmol/l glucose (1.79 ± 0.39 vs 0.66 ± 0.15 (a.u.); p = 0.0078). mRNA levels of genes involved in autophagosome formation and autophagosome-lysosome fusion remained unchanged in E16-infected cells, except Atg7, which was significantly increased when autophagy was induced by E16 infection, in combination with LG (1.48 ± 0.08-fold; p = 0.02) and at 11.1 mmol/l glucose (1.26 ± 0.2-fold; p = 0.001), compared with NT controls. Moreover, autophagosomes accumulated in E16-infected cells to the same extent as when cells were treated with the lysosomal inhibitor, chloroquine, clearly indicating that autophagosome turnover was blocked. Upon infection, there was an increased viral titre in the cell culture supernatant and a marked reduction in glucose-stimulated insulin secretion (112.9 ± 24.4 vs 209.8 ± 24.4 ng [mg protein]-1 h-1; p = 0.006), compared with uninfected controls, but cellular viability remained unaffected. Importantly, and in agreement with the observations for INS(832/13) cells, E16 infection impaired autophagic flux in primary human islet cells (46.5 ± 1.6 vs 34.4 ± 2.1 µm2/cell; p = 0.01). CONCLUSIONS/INTERPRETATION: Enteroviruses disrupt beta cell autophagy by impairing the later stages of the autophagic pathway, without influencing expression of key genes involved in core autophagy machinery. This results in increased viral replication, non-lytic viral spread and accumulation of autophagic structures, all of which may contribute to beta cell demise and type 1 diabetes. Graphical abstract.


Asunto(s)
Autofagia/fisiología , Islotes Pancreáticos/metabolismo , Páncreas/fisiología , Autofagia/genética , Western Blotting , Femenino , Humanos , Masculino , Replicación Viral/genética , Replicación Viral/fisiología
4.
Diabetologia ; 61(4): 896-905, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29209740

RESUMEN

AIMS/HYPOTHESIS: Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available. METHODS: We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry. Additionally, measurements of intra-islet blood flow were performed using microsphere injections. We also assessed immune cell infiltration, cytokine expression in islets (by immunohistochemistry and qPCR), as well as islet Glut2 expression and ATP/ADP ratio to determine effects on glucose uptake and metabolism in beta cells. RESULTS: DRLyp/Lyp rats were normoglycaemic and without traces of immune cell infiltrates. However, IVGTTs revealed a significant decrease in the acute insulin response to glucose compared with control rats (1685.3 ± 121.3 vs 633.3 ± 148.7; p < 0.0001). In agreement, insulin secretion was severely perturbed in isolated islets, and both first- and second-phase insulin release were lowered compared with control rats, while glucagon secretion was similar in both groups. Interestingly, after 5-7 days of culture of islets from DRLyp/Lyp rats in normal media, glucose-stimulated insulin secretion (GSIS) was improved; although, a significant decrease in GSIS was still evident compared with islets from control rats at this time (7393.9 ± 1593.7 vs 4416.8 ± 1230.5 pg islet-1 h-1; p < 0.0001). Compared with controls, OPT of whole pancreas from DRLyp/Lyp rats revealed significant reductions in medium (4.1 × 109 ± 9.5 × 107 vs 3.8 × 109 ± 5.8 × 107 µm3; p = 0.044) and small sized islets (1.6 × 109 ± 5.1 × 107 vs 1.4 × 109 ± 4.5 × 107 µm3; p = 0.035). Finally, we found lower intra-islet blood perfusion in vivo (113.1 ± 16.8 vs 76.9 ± 11.8 µl min-1 [g pancreas]-1; p = 0.023) and alterations in the beta cell ATP/ADP ratio in DRLyp/Lyp rats vs control rats. CONCLUSIONS/INTERPRETATION: The present study identifies a deterioration of beta cell function and mass, and intra-islet blood flow that precedes insulitis and diabetes development in animals prone to autoimmune type 1 diabetes. These underlying changes in islet function may be previously unrecognised factors of importance in type 1 diabetes development.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Células Secretoras de Insulina/citología , Insulina/metabolismo , Adenosina Difosfato/química , Adenosina Trifosfato/química , Animales , Glucemia/metabolismo , Femenino , Genotipo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Células de Langerhans/metabolismo , Masculino , Páncreas/metabolismo , Perfusión , Ratas , Ratas Endogámicas BB , Ratas Wistar
5.
Diabetologia ; 59(4): 744-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26733006

RESUMEN

AIMS/HYPOTHESIS: The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells. METHODS: Expression of HTR2B mRNA and 5-HT2B protein was examined with quantitative real-time PCR, RNA sequencing and immunohistochemistry. α-Methyl serotonin maleate salt (AMS), a serotonin receptor agonist, was employed for robust 5-HT2B receptor activation. Htr2b was silenced with small interfering RNA in INS-1(832/13) cells. Insulin secretion, Ca(2+) response and oxygen consumption rate were determined. RESULTS: Immunohistochemistry revealed that 5-HT2B is expressed in human and mouse islet beta cells. Activation of 5-HT2B receptors by AMS enhanced glucose-stimulated insulin secretion (GSIS) in human and mouse islets as well as in INS-1(832/13) cells. Silencing Htr2b in INS-1(832/13) cells led to a 30% reduction in GSIS. 5-HT2B receptor activation produced robust, regular and sustained Ca(2+) oscillations in mouse islets with an increase in both peak distance (period) and time in the active phase as compared with control. Enhanced insulin secretion and Ca(2+) changes induced by AMS coincided with an increase in oxygen consumption in INS-1(832/13) cells. CONCLUSIONS/INTERPRETATION: Activation of 5-HT2B receptors stimulates GSIS in beta cells by triggering downstream changes in cellular Ca(2+) flux that enhance mitochondrial metabolism. Our findings suggest that serotonin and the 5-HT2B receptor stimulate insulin release.


Asunto(s)
Glucosa/farmacología , Islotes Pancreáticos/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Técnicas In Vitro , Islotes Pancreáticos/efectos de los fármacos , Ratones , Receptor de Serotonina 5-HT2B/genética
6.
Diabetologia ; 59(9): 1928-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338624

RESUMEN

AIMS/HYPOTHESIS: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. METHODS: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. RESULTS: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. CONCLUSIONS/INTERPRETATION: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucagón/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Western Blotting , Señalización del Calcio/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangre , Electrofisiología , Exocitosis/genética , Exocitosis/fisiología , Femenino , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Inmunohistoquímica , Hibridación in Situ , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Hum Mol Genet ; 23(24): 6419-31, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015099

RESUMEN

Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Insulina/genética , Proteínas con Homeodominio LIM/genética , Proinsulina/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Factores de Transcripción/genética , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Proinsulina/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Biochem Biophys Res Commun ; 474(2): 357-363, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27109474

RESUMEN

Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed ß-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism.


Asunto(s)
Adipocitos/metabolismo , Lipólisis/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas de Receptores de Serotonina/administración & dosificación , Serotonina/metabolismo , Adipocitos/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Lipólisis/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
9.
J Med Virol ; 88(6): 971-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26629879

RESUMEN

In an earlier study, infection of human pancreatic islets with epidemic strains of echovirus (E4, E16, E30), with proven but differently ability to induce islet autoimmunity, resulted either in a severe damage (i.e., E16 and E30) or proceeded without visible changes in infected islets (i.e., E4). In this study, the ability of these strains to replicate in beta cells and the consequence of such an infection for beta cell lysis and beta cell function was studied in the pancreatic beta cell lines INS-1, MIN6, and NIT-1. The strains of E16 and E30 did replicate in INS1, MIN6, and NIT1 cells and resulted in a pronounced cytopathic effect within 3 days following infection. By contrast, E4 replicated in all examined insulinoma cells with no apparent cell destruction. The insulin release in response to high glucose stimulation was hampered in all infected cells (P < 0.05) when no evidence of cytolysis was present; however, the adverse effect of E16 and E30 on insulin secretion appeared to be higher than that of the E4 strain. The differential effects of echovirus infection on cell lysis, and beta cell function in the rodent insulinoma INS1, MIN6, and NIT 1 cells reflect those previously obtained in primary human islets and support the notion that the insulin-producing beta cells can harbor a non-cytopathic viral infection.


Asunto(s)
Efecto Citopatogénico Viral , Enterovirus Humano B/fisiología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/virología , Insulina/metabolismo , Replicación Viral , Muerte Celular , Línea Celular , Enterovirus Humano B/patogenicidad , Glucosa/farmacología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/patología , Insulinoma
10.
Biochem Biophys Res Commun ; 468(4): 629-35, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26546820

RESUMEN

Lack or dysfunction of insulin producing ß cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet ß cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic ß cells suggesting that loss of Mao contributes to ß cell dysfunction. MaoB expression was also reduced in ß cells of MafA-deficient mice, a mouse model for ß cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human ß cells. These findings demonstrate that regulation of monoamine levels by Mao activity in ß cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the ß cell dysfunction in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Factores de Transcripción Maf de Gran Tamaño/biosíntesis , Monoaminooxidasa/metabolismo , Animales , Células Cultivadas , Humanos , Secreción de Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Activación Transcripcional
11.
J Biol Chem ; 288(40): 29013-23, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23935095

RESUMEN

Insulin is a major autoantigen in islet autoimmunity and progression to type 1 diabetes. It has been suggested that the insulin B-chain may be critical to insulin autoimmunity in type 1 diabetes. INS-IGF2 consists of the preproinsulin signal peptide, the insulin B-chain, and eight amino acids of the C-peptide in addition to 138 amino acids from the IGF2 gene. We aimed to determine the expression of INS-IGF2 in human pancreatic islets and autoantibodies in newly diagnosed children with type 1 diabetes and controls. INS-IGF2, expressed primarily in beta cells, showed higher levels of expression in islets from normal compared with donors with either type 2 diabetes (p = 0.006) or high HbA1c levels (p < 0.001). INS-IGF2 autoantibody levels were increased in newly diagnosed patients with type 1 diabetes (n = 304) compared with healthy controls (n = 355; p < 0.001). Displacement with cold insulin and INS-IGF2 revealed that more patients than controls had doubly reactive insulin-INS-IGF2 autoantibodies. These data suggest that INS-IGF2, which contains the preproinsulin signal peptide, the B-chain, and eight amino acids of the C-peptide may be an autoantigen in type 1 diabetes. INS-IGF2 and insulin may share autoantibody-binding sites, thus complicating the notion that insulin is the primary autoantigen in type 1 diabetes.


Asunto(s)
Autoinmunidad/inmunología , Insulina/inmunología , Islotes Pancreáticos/inmunología , Proteínas Mutantes Quiméricas/inmunología , Precursores de Proteínas/inmunología , Adolescente , Autoanticuerpos/sangre , Cromosomas Humanos Par 11/genética , ADN Complementario/genética , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Electroforesis en Gel de Poliacrilamida , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Genoma Humano/genética , Humanos , Insulina/sangre , Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Persona de Mediana Edad , Proteínas Mutantes Quiméricas/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Precursores de Proteínas/sangre , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/metabolismo , Transcripción Genética
12.
Acta Physiol (Oxf) ; 240(6): e14148, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38656044

RESUMEN

Pancreatic ß cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper ß-cell function. To fulfill this highly specialized nutrient sensor role, ß cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of ß cells will be outlined, including their alterations in type 2 diabetes (T2D). ß cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips ß cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, ß cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to ß-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Insulina/metabolismo
13.
EBioMedicine ; 104: 105144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723553

RESUMEN

BACKGROUND: Two or more autoantibodies against either insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) or zinc transporter 8 (ZnT8A) denote stage 1 (normoglycemia) or stage 2 (dysglycemia) type 1 diabetes prior to stage 3 type 1 diabetes. Automated multiplex Antibody Detection by Agglutination-PCR (ADAP) assays in two laboratories were compared to single plex radiobinding assays (RBA) to define threshold levels for diagnostic specificity and sensitivity. METHODS: IAA, GADA, IA-2A and ZnT8A were analysed in 1504 (54% females) population based controls (PBC), 456 (55% females) doctor's office controls (DOC) and 535 (41% females) blood donor controls (BDC) as well as in 2300 (48% females) patients newly diagnosed (1-10 years of age) with stage 3 type 1 diabetes. The thresholds for autoantibody positivity were computed in 100 10-fold cross-validations to separate patients from controls either by maximizing the χ2-statistics (chisq) or using the 98th percentile of specificity (Spec98). Mean and 95% CI for threshold, sensitivity and specificity are presented. FINDINGS: The ADAP ROC curves of the four autoantibodies showed comparable AUC in the two ADAP laboratories and were higher than RBA. Detection of two or more autoantibodies using chisq showed 0.97 (0.95, 0.99) sensitivity and 0.94 (0.91, 0.97) specificity in ADAP compared to 0.90 (0.88, 0.95) sensitivity and 0.97 (0.94, 0.98) specificity in RBA. Using Spec98, ADAP showed 0.92 (0.89, 0.95) sensitivity and 0.99 (0.98, 1.00) specificity compared to 0.89 (0.77, 0.86) sensitivity and 1.00 (0.99, 1.00) specificity in the RBA. The diagnostic sensitivity and specificity were higher in PBC compared to DOC and BDC. INTERPRETATION: ADAP was comparable in two laboratories, both comparable to or better than RBA, to define threshold levels for two or more autoantibodies to stage type 1 diabetes. FUNDING: Supported by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2009-04078), the Swedish Foundation for Strategic Research (Dnr IRC15-0067) and the Swedish Research Council, Strategic Research Area (Dnr 2009-1039). AL was supported by the DiaUnion collaborative study, co-financed by EU Interreg ÖKS, Capital Region of Denmark, Region Skåne and the Novo Nordisk Foundation.


Asunto(s)
Autoanticuerpos , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Femenino , Masculino , Niño , Preescolar , Lactante , Transportador 8 de Zinc/inmunología , Sensibilidad y Especificidad , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/inmunología , Glutamato Descarboxilasa/inmunología , Curva ROC , Tamizaje Masivo/métodos
14.
Trends Mol Med ; 29(12): 1045-1058, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37722934

RESUMEN

The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in ß-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in ß-cell physiology and plays a role in expansion of ß-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing ß-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Melatonina , Humanos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Melatonina/uso terapéutico , Melatonina/metabolismo , Serotonina , Insulina , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo
15.
Diabetes ; 72(4): 455-466, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662636

RESUMEN

Reversible phosphorylation is an important regulatory mechanism. Regulation of protein phosphorylation in ß-cells has been extensively investigated, but less is known about protein dephosphorylation. To understand the role of protein dephosphorylation in ß-cells and type 2 diabetes (T2D), we first examined mRNA expression of the type 2C family (PP2C) of protein phosphatases in islets from T2D donors. Phosphatase expression overall was changed in T2D, and that of PPM1E was the most markedly downregulated. PPM1E expression correlated inversely with HbA1c. Silencing of PPM1E increased glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells and/or islets from patients with T2D, whereas PPM1E overexpression decreased GSIS. Increased GSIS after PPM1E silencing was associated with decreased oxidative stress, elevated cytosolic Ca2+ levels and ATP to ADP ratio, increased hyperpolarization of the inner mitochondrial membrane, and phosphorylation of CaMKII, AMPK, and acetyl-CoA carboxylase. Silencing of PPM1E, however, did not change insulin content. Increased GSIS, cell viability, and activation of AMPK upon metformin treatment in ß-cells were observed upon PPM1E silencing. Thus, protein dephosphorylation via PPM1E abrogates GSIS. Consequently, reduced PPM1E expression in T2D may be a compensatory response of ß-cells to uphold insulin secretion under metabolic duress. Targeting PPM1E in ß-cells may thus represent a novel therapeutic strategy for treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Secreción de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
16.
Mol Metab ; 76: 101772, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37442376

RESUMEN

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Asunto(s)
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreción de Insulina , Línea Celular , Insulina/metabolismo , Factores de Transcripción/metabolismo , Glucosa/metabolismo
17.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656641

RESUMEN

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina/genética , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción PAX5/metabolismo
18.
Nat Commun ; 13(1): 4237, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869052

RESUMEN

Glucose-induced insulin secretion depends on ß-cell electrical activity. Inhibition of ATP-regulated potassium (KATP) channels is a key event in this process. However, KATP channel closure alone is not sufficient to induce ß-cell electrical activity; activation of a depolarizing membrane current is also required. Here we examine the role of the mechanosensor ion channel PIEZO1 in this process. Yoda1, a specific PIEZO1 agonist, activates a small membrane current and thereby triggers ß-cell electrical activity with resultant stimulation of Ca2+-influx and insulin secretion. Conversely, the PIEZO1 antagonist GsMTx4 reduces glucose-induced Ca2+-signaling, electrical activity and insulin secretion. Yet, PIEZO1 expression is elevated in islets from human donors with type-2 diabetes (T2D) and a rodent T2D model (db/db mouse), in which insulin secretion is reduced. This paradox is resolved by our finding that PIEZO1 translocates from the plasmalemma into the nucleus (where it cannot influence the membrane potential of the ß-cell) under experimental conditions emulating T2D (high glucose culture). ß-cell-specific Piezo1-knockout mice show impaired glucose tolerance in vivo and reduced glucose-induced insulin secretion, ß-cell electrical activity and Ca2+ elevation in vitro. These results implicate mechanotransduction and activation of PIEZO1, via intracellular accumulation of glucose metabolites, as an important physiological regulator of insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular , Ratones
19.
Mol Metab ; 66: 101629, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343918

RESUMEN

OBJECTIVE: Ependymin-Related Protein 1 (EPDR1) was recently identified as a secreted human batokine regulating mitochondrial respiration linked to thermogenesis in brown fat. Despite that EPDR1 is expressed in human pancreatic ß-cells and that glucose-stimulated mitochondrial metabolism is critical for stimulus-secretion coupling in ß-cells, the role of EPDR1 in ß-cell metabolism and function has not been investigated. METHODS: EPDR1 mRNA levels in human pancreatic islets from non-diabetic (ND) and type 2 diabetes (T2D) subjects were assessed. Human islets, EndoC-ßH1 and INS1 832/13 cells were transfected with scramble (control) and EPDR1 siRNAs (EPDR1-KD) or treated with human EPDR1 protein, and glucose-stimulated insulin secretion (GSIS) assessed by ELISA. Mitochondrial metabolism was investigated by extracellular flux analyzer, confocal microscopy and mass spectrometry-based metabolomics analysis. RESULTS: EPDR1 mRNA expression was upregulated in human islets from T2D and obese donors and positively correlated to BMI of donors. In T2D donors, EPDR1 mRNA levels negatively correlated with HbA1c and positively correlated with GSIS. EPDR1 silencing in human islets and ß-cell lines reduced GSIS whereas treatment with human EPDR1 protein increased GSIS. Epdr1 silencing in INS1 832/13 cells reduced glucose- and pyruvate- but not K+-stimulated insulin secretion. Metabolomics analysis in Epdr1-KD INS1 832/13 cells suggests diversion of glucose-derived pyruvate to lactate production and decreased malate-aspartate shuttle and the tricarboxylic acid (TCA) cycle activity. The glucose-stimulated rise in mitochondrial respiration and ATP/ADP-ratio was impaired in Epdr1-deficient cells. CONCLUSION: These results suggests that to maintain glucose homeostasis in obese people, upregulation of EPDR1 may improve ß-cell function via channelling glycolysis-derived pyruvate to the mitochondrial TCA cycle.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Piruvatos , Obesidad , ARN Mensajero
20.
Acta Physiol (Oxf) ; 236(4): e13884, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056607

RESUMEN

AIM: The influence of dietary carbohydrates and fats on weight gain is inconclusively understood. We studied the acute impact of these nutrients on the overall metabolic state utilizing the insulin:glucagon ratio (IGR). METHODS: Following in vitro glucose and palmitate treatment, insulin and glucagon secretion from islets isolated from C57Bl/6J mice was measured. Our human in vivo study included 21 normoglycaemia (mean age 51.9 ± 16.5 years, BMI 23.9 ± 3.5 kg/m2 , and HbA1c 36.9 ± 3.3 mmol/mol) and 20 type 2 diabetes (T2D) diagnosed individuals (duration 12 ± 7 years, mean age 63.6 ± 4.5 years, BMI 29.1 ± 2.4 kg/m2 , and HbA1c 52.3 ± 9.5 mmol/mol). Individuals consumed a carbohydrate-rich or fat-rich meal (600 kcal) in a cross-over design. Plasma insulin and glucagon levels were measured at -30, -5, and 0 min, and every 30 min until 240 min after meal ingestion. RESULTS: The IGR measured from mouse islets was determined solely by glucose levels. The palmitate-stimulated hormone secretion was largely glucose independent in the analysed mouse islets. The acute meal tolerance test demonstrated that insulin and glucagon secretion is dependent on glycaemic status and meal composition, whereas the IGR was dependent upon meal composition. The relative reduction in IGR elicited by the fat-rich meal was more pronounced in obese individuals. This effect was blunted in T2D individuals with elevated HbA1c levels. CONCLUSION: The metabolic state in normoglycaemic individuals and T2D-diagnosed individuals is regulated by glucose. We demonstrate that consumption of a low carbohydrate diet, eliciting a catabolic state, may be beneficial for weight loss, particularly in obese individuals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Adulto , Anciano , Animales , Humanos , Ratones , Persona de Mediana Edad , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada , Insulina/metabolismo , Nutrientes , Obesidad , Palmitatos , Estudios Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA