Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 36(5): 1137-1146, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460487

RESUMEN

BACKGROUND: Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l-dopa)-induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. METHODS: We used mouse and non-human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l-dopa administration and to establish a causative link between impaired autophagy and dyskinesia. RESULTS: We found that l-dopa-induced dyskinesia is associated with accumulation of the autophagy-specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l-dopa-mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l-dopa, and reduced dyskinesia. The anti-dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor-expressing striatal neurons, through inactivation of the autophagy-related gene protein 7. CONCLUSIONS: These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l-dopa-induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Animales , Antiparkinsonianos/toxicidad , Autofagia , Cuerpo Estriado , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Humanos , Levodopa/toxicidad , Ratones , Oxidopamina
2.
J Neuropsychiatry Clin Neurosci ; 33(2): 144-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33203305

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is effective for the motor symptoms of Parkinson's disease (PD). Although most patients benefit with minimal cognitive side effects, cognitive decline is a risk, and there is little available evidence to guide preoperative risk assessment. Visual illusions or visual hallucinations (VHs) and impulse-control behaviors (ICBs) are relatively common complications of PD and its treatment and may be a marker of more advanced disease, but their relationship with postoperative cognition has not been established. The authors aimed to determine whether any preoperative history of VHs or ICBs is associated with cognitive change after DBS. METHODS: Retrospective chart review identified 54 patients with PD who received DBS of the subthalamic nucleus or globus pallidus internus and who completed both pre- and postoperative neuropsychological testing. Linear regression models were used to assess whether any preoperative history of VHs or ICBs was associated with changes in attention, executive function, language, memory, or visuospatial cognitive domains while controlling for surgical target and duration between evaluations. RESULTS: The investigators found that a history of VHs was associated with declines in attention (b=-4.04, p=0.041) and executive function (b=-4.24, p=0.021). A history of ICBs was not associated with any significant changes. CONCLUSIONS: These results suggest that a history of VHs may increase risk of cognitive decline after DBS; thus, specific preoperative counseling and targeted remediation strategies for these patients may be indicated. In contrast, a history of ICBs does not appear to be associated with increased cognitive risk.


Asunto(s)
Disfunción Cognitiva/etiología , Estimulación Encefálica Profunda/efectos adversos , Alucinaciones/epidemiología , Enfermedad de Parkinson/terapia , Anciano , Función Ejecutiva , Femenino , Globo Pálido/fisiopatología , Humanos , Conducta Impulsiva , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos , Estudios Retrospectivos , Núcleo Subtalámico/fisiopatología
3.
PLoS Genet ; 10(9): e1004574, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254549

RESUMEN

Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Regulación de la Expresión Génica , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Proteínas del Grupo Polycomb/genética , Transducción de Señal , Activación Transcripcional , Animales , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Sitios Genéticos , Histonas/metabolismo , Levodopa/farmacología , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Unión Proteica , ARN Mensajero/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
4.
J Neurosci ; 33(36): 14331-41, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005286

RESUMEN

Impairments of synaptic plasticity are a hallmark of several neurological disorders, including Parkinson's disease (PD) which results from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.


Asunto(s)
Dopamina/metabolismo , Depresión Sináptica a Largo Plazo , Trastornos Parkinsonianos/fisiopatología , Sustancia Negra/fisiopatología , Sinapsis/fisiología , Tálamo/fisiopatología , Animales , Neuronas Dopaminérgicas/fisiología , Endocitosis , Masculino , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de Dopamina D5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
J Biol Chem ; 287(33): 27806-12, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22753408

RESUMEN

Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia.


Asunto(s)
AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Dopamina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Animales , Antiparkinsonianos/farmacología , AMP Cíclico/genética , Dopamina/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Levodopa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Proteínas/genética , Serina-Treonina Quinasas TOR
6.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38045312

RESUMEN

Artificial activation of anatomically localized, genetically defined hypothalamic neuron populations is known to trigger distinct innate behaviors, suggesting a hypothalamic nucleus-centered organization of behavior control. To assess whether the encoding of behavior is similarly anatomically confined, we performed simultaneous neuron recordings across twenty hypothalamic regions in freely moving animals. Here we show that distinct but anatomically distributed neuron ensembles encode the social and fear behavior classes, primarily through mixed selectivity. While behavior class-encoding ensembles were spatially distributed, individual ensembles exhibited strong localization bias. Encoding models identified that behavior actions, but not motion-related variables, explained a large fraction of hypothalamic neuron activity variance. These results identify unexpected complexity in the hypothalamic encoding of instincts and provide a foundation for understanding the role of distributed neural representations in the expression of behaviors driven by hardwired circuits.

7.
Transl Psychiatry ; 12(1): 213, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624103

RESUMEN

Patients with psychiatric symptoms, such as depression, anxiety, and visual hallucinations, may be at increased risk for adverse effects following deep brain stimulation of the subthalamic nucleus for Parkinson's disease, but there have been relatively few studies of associations between locations of chronic stimulation and neuropsychological outcomes. We sought to determine whether psychiatric history modulates associations between stimulation location within the subthalamic nucleus and postoperative affective and cognitive changes. We retrospectively identified 42 patients with Parkinson's disease who received bilateral subthalamic nucleus deep brain stimulation and who completed both pre- and postoperative neuropsychological testing. Active stimulation contacts were localized in MNI space using Lead-DBS software. Linear discriminant analysis identified vectors maximizing variance in postoperative neuropsychological changes, and Pearson's correlations were used to assess for linear relationships. Stimulation location was associated with postoperative change for only 3 of the 18 neuropsychological measures. Variation along the superioinferior (z) axis was most influential. Constraining the analysis to patients with a history of depression revealed 10 measures significantly associated with active contact location, primarily related to location along the anterioposterior (y) axis and with worse outcomes associated with more anterior stimulation. Analysis of patients with a history of anxiety revealed 5 measures with location-associated changes without a predominant axis. History of visual hallucinations was not associated with significant findings. Our results suggest that a history of depression may influence the relationship between active contact location and neuropsychological outcomes following subthalamic nucleus deep brain stimulation. These patients may be more sensitive to off-target (nonmotor) stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Estimulación Encefálica Profunda/efectos adversos , Depresión/etiología , Depresión/terapia , Humanos , Enfermedad de Parkinson/terapia , Estudios Retrospectivos
8.
Addict Biol ; 16(3): 428-39, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21309945

RESUMEN

The synaptic signaling mechanisms mediating the behavioral effects of ethanol (EtOH) remain poorly understood. Post-synaptic density 95 (PSD-95, SAP-90, Dlg4) is a key orchestrator of N-methyl-D-aspartate receptors (NMDAR) and glutamatergic synapses, which are known to be major sites of EtOH's behavioral actions. However, the potential contribution of PSD-95 to EtOH-related behaviors has not been established. Here, we evaluated knockout (KO) mice lacking PSD-95 for multiple measures of sensitivity to the acute intoxicating effects of EtOH (ataxia, hypothermia, sedation/hypnosis), EtOH drinking under conditions of free access and following deprivation, acquisition and long-term retention of EtOH conditioned place preference (CPP) (and lithium chloride-induced conditioned taste aversion), and intoxication-potentiating responses to NMDAR antagonism. PSD-95 KO exhibited increased sensitivity to the sedative/hypnotic, but not ataxic or hypothermic, effects of acute EtOH relative to wild-type controls (WT). PSD-95 KO consumed less EtOH than WT, particularly at higher EtOH concentrations, although increases in KO drinking could be induced by concentration-fading and deprivation. PSD-95 KO showed normal EtOH CPP 1 day after conditioning, but showed significant aversion 2 weeks later. Lithium chloride-induced taste aversion was impaired in PSD-95 KO at both time points. Finally, the EtOH-potentiating effects of the NMDAR antagonist MK-801 were intact in PSD-95 KO at the dose tested. These data reveal a major, novel role for PSD-95 in mediating EtOH behaviors, and add to growing evidence that PSD-95 is a key mediator of the effects of multiple abused drugs.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Intoxicación Alcohólica/genética , Intoxicación Alcohólica/psicología , Aprendizaje por Asociación/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Guanilato-Quinasas/genética , Proteínas de la Membrana/genética , Medio Social , Animales , Antimaníacos/farmacología , Homólogo 4 de la Proteína Discs Large , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Inyecciones Intraperitoneales , Cloruro de Litio/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Gusto/efectos de los fármacos , Gusto/genética
9.
Neurobiol Dis ; 40(3): 608-21, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20699120

RESUMEN

Glutamatergic dysfunction is strongly implicated in schizophrenia and mood disorders. GluA1 knockout (KO) mice display schizophrenia- and depression-related abnormalities. Here, we asked whether GluA1 KO show mania-related abnormalities. KO were tested for behavior in approach/avoid conflict tests, responses to repeated forced swim exposure, and locomotor responses under stress and after psychostimulant treatment. The effects of rapid dopamine depletion and treatment with lithium or a GSK-3ß inhibitor (SB216763) on KO locomotor hyperactivity were tested. Results showed that KO exhibited novelty- and stress-induced locomotor hyperactivity, reduced forced swim immobility and alterations in approach/avoid conflict tests. Psychostimulant treatment and dopamine depletion exacerbated KO locomotor hyperactivity. Lithium, but not SB216763, treatment normalized KO anxiety-related behavior and partially reversed hyperlocomotor behavior, and also reversed elevated prefrontal cortex levels of phospho-MARCKS and phospho-neuromodulin. Collectively, these findings demonstrate mania-related abnormalities in GluA1 KO and, combined with previous findings, suggest this mutant may provide a novel model of features of schizoaffective disorder.


Asunto(s)
Trastornos Psicóticos/genética , Trastornos Psicóticos/fisiopatología , Receptores AMPA/genética , Animales , Antimaníacos/farmacología , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Eliminación de Gen , Compuestos de Litio/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Trastornos Psicóticos/metabolismo , Receptores AMPA/metabolismo
10.
Protein Sci ; 29(6): 1486-1501, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239688

RESUMEN

Exocyst is an evolutionarily conserved hetero-octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative-stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride cross-links from chemical-crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo-EM structure, cross-links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo-EM structure, except for Sec5. While not observed in the cryo-EM map, the integrative model localizes the N-terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low-resolution structural data can inform biologically relevant hypotheses, even in the absence of high-resolution data.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Pharmacol Biochem Behav ; 91(3): 453-60, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18809426

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are mediators of synaptic plasticity and learning and are implicated in the pathophysiology of neuropsychiatric disease and age-related cognitive dysfunction. NMDARs are heteromers, but the relative contribution of specific subunits to NMDAR-mediated learning is not fully understood. We characterized pre-conditioning systemic treatment of the NR2B subunit-selective antagonist Ro 25-6981 for effects on multi-trial, one-trial and low-shock Pavlovian fear conditioning in C57BL/6J mice. Ro 25-6981 was also profiled for effects on novel open field exploration, elevated plus-maze anxiety-like behavior, startle reactivity, prepulse inhibition of startle, and nociception. Three-month (adult) and 12-month old C57BL/6Tac mice were compared for Ro 25-6981 effects on multi-trial fear conditioning, and corticolimbic NR2B protein levels. Ro 25-6981 moderately impaired fear learning in the multi-trial and one-trial (but not low-shock) conditioning paradigms, but did not affect exploratory or anxiety-related behaviors or sensory functions. Memory impairing effects of Ro 25-6981 were absent in 12-month old mice, although NR2B protein levels were not significantly altered. Present data provide further evidence of the memory impairing effects of selective blockade of NR2B-containing NMDARs, and show loss of these effects with ageing. This work could ultimately have implications for elucidating the pathophysiology of learning dysfunction in neuropsychiatric disorders and ageing.


Asunto(s)
Envejecimiento/psicología , Antagonistas de Aminoácidos Excitadores/farmacología , Miedo/psicología , Trastornos de la Memoria/inducido químicamente , Fenoles/farmacología , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Estimulación Acústica , Animales , Western Blotting , Corteza Cerebral/metabolismo , Conducta Exploratoria/efectos de los fármacos , Calor , Sistema Límbico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Reflejo de Sobresalto/efectos de los fármacos
12.
Learn Mem ; 15(2): 50-4, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18230672

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice exhibited significantly retarded discrimination learning. Performance on reversal was impaired in NR2A KO mice during the learning phase of the task; with no evidence of heightened perseverative responses. Acquisition and extinction of an instrumental behavior requiring no pairwise discrimination was normal in NR2A KO mice. The present findings demonstrate a significant and selective deficit in discrimination learning following loss of NR2A.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Receptores de N-Metil-D-Aspartato/deficiencia , Animales , Condicionamiento Operante/fisiología , Extinción Psicológica/fisiología , Ratones , Ratones Noqueados , Aprendizaje Inverso/fisiología , Percepción Visual/fisiología
14.
Neuron ; 100(5): 1209-1223.e4, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482693

RESUMEN

Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.


Asunto(s)
Proteínas de Drosophila/metabolismo , Etanol/administración & dosificación , Glicoproteínas/metabolismo , Memoria/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Señales (Psicología) , Masculino , Cuerpos Pedunculados/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Odorantes , Isoformas de Proteínas/metabolismo , Receptores de Dopamina D2/metabolismo , Transcriptoma
15.
JCI Insight ; 3(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30232282

RESUMEN

Zebrafish are a powerful tool for studying muscle function owing to their high numbers of offspring, low maintenance costs, evolutionarily conserved muscle functions, and the ability to rapidly take up small molecular compounds during early larval stages. Fukutin-related protein (FKRP) is a putative protein glycosyltransferase that functions in the Golgi apparatus to modify sugar chain molecules of newly translated proteins. Patients with mutations in the FKRP gene can have a wide spectrum of clinical symptoms with varying muscle, eye, and brain pathologies depending on the location of the mutation in the FKRP protein. Patients with a common L276I FKRP mutation have mild adult-onset muscle degeneration known as limb-girdle muscular dystrophy 2I (LGMD2I), whereas patients with more C-terminal pathogenic mutations develop the severe Walker-Warburg syndrome (WWS)/muscle-eye-brain (MEB) disease. We generated fkrp-mutant zebrafish that phenocopy WWS/MEB pathologies including severe muscle breakdowns, head malformations, and early lethality. We have also generated a milder LGMD2I-model zebrafish via overexpression of a heat shock-inducible human FKRP (L276I) transgene that shows milder muscle pathology. Screening of an FDA-approved drug compound library in the LGMD2I zebrafish revealed a strong propensity towards steroids, antibacterials, and calcium regulators in ameliorating FKRP-dependent pathologies. Together, these studies demonstrate the utility of the zebrafish to both study human-specific FKRP mutations and perform compound library screenings for corrective drug compounds to treat muscular dystrophies.


Asunto(s)
Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/fisiopatología , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Técnicas de Inactivación de Genes , Humanos , Locomoción , Movimiento , Músculo Esquelético/fisiopatología , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Pentosiltransferasa , Fenotipo , Proteínas , Transcriptoma , Síndrome de Walker-Warburg , Pez Cebra
16.
J Am Med Inform Assoc ; 14(2): 232-4, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17213493

RESUMEN

OBJECTIVES: To determine the prevalence and inaccessibility of Internet references in the bibliography of biomedical publications when first released in PubMed. METHODS: During a one-month observational study period (Feb 21 to Mar 21, 2006) the Internet citations from a 20% random sample of all forthcoming publications released in PubMed during the previous day were identified. Attempts to access the referenced Internet citations were completed within one day and inaccessible Internet citations were recorded. RESULTS: The study included 4,699 publications from 844 different journals. Among the 141,845 references there were 840 (0.6%) Internet citations. One or more Internet references were cited in 403 (8.6%) articles. From the 840 Internet references, 11.9% were already inaccessible within two days after an article's release to the public. CONCLUSION: The prevalence of Internet citations in journals included in PubMed is small (<1%); however, the inaccessibility rate at the time of publication is considered substantial. Authors, editors, and publishers need to take responsibility for providing accurate and accessible Internet references.


Asunto(s)
Acceso a la Información , Investigación Biomédica , Internet , Bibliotecas Digitales , Bibliotecas Digitales/estadística & datos numéricos , Publicaciones Periódicas como Asunto , PubMed , Edición
17.
Nat Biotechnol ; 35(5): 444-452, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28398344

RESUMEN

Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFß, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal astrocytes into iDANs that are excitable and correct some aspects of motor behavior in vivo, including gait impairments. With further optimization, this approach may enable clinical therapies for Parkinson's disease by delivery of genes rather than cells.


Asunto(s)
Astrocitos/trasplante , Técnicas de Reprogramación Celular/métodos , Neuronas Dopaminérgicas/citología , Trastornos del Movimiento/prevención & control , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Animales , Astrocitos/citología , Diferenciación Celular/genética , Células Cultivadas , Humanos , Ratones , Trastornos del Movimiento/etiología , Trastornos del Movimiento/patología , Enfermedad de Parkinson/complicaciones , Resultado del Tratamiento
18.
J Clin Invest ; 126(8): 2783-91, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479747

RESUMEN

The number of long noncoding RNAs (lncRNAs) has grown rapidly; however, our understanding of their function remains limited. Although cultured cells have facilitated investigations of lncRNA function at the molecular level, the use of animal models provides a rich context in which to investigate the phenotypic impact of these molecules. Promising initial studies using animal models demonstrated that lncRNAs influence a diverse number of phenotypes, ranging from subtle dysmorphia to viability. Here, we highlight the diversity of animal models and their unique advantages, discuss the use of animal models to profile lncRNA expression, evaluate experimental strategies to manipulate lncRNA function in vivo, and review the phenotypes attributable to lncRNAs. Despite a limited number of studies leveraging animal models, lncRNAs are already recognized as a notable class of molecules with important implications for health and disease.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Caenorhabditis elegans , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Drosophila melanogaster , Edición Génica , Genoma Humano , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/patología , Fenotipo , Pez Cebra
19.
Biol Psychiatry ; 79(5): 362-371, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25193242

RESUMEN

BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement of mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS: 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in ∆FosB- or ∆cJun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction. RESULTS: Genetic inactivation of MSK1 attenuated LID and reduced the phosphorylation of histone H3 at Ser10 in the striatum. Chromatin immunoprecipitation analysis showed that this reduction occurred at the level of the fosB gene promoter. In line with this observation, the accumulation of ∆FosB produced by chronic L-DOPA was reduced in MSK1 knockout. Moreover, inducible overexpression of ∆FosB in striatonigral medium spiny neurons exacerbated dyskinetic behavior, whereas overexpression of ∆cJun, which reduces ∆FosB-dependent transcriptional activation, counteracted LID. CONCLUSIONS: Results indicate that abnormal regulation of MSK1 contributes to the development of LID and to the concomitant increase in striatal ∆FosB, which may occur via increased histone H3 phosphorylation at the fosB promoter. Results also show that accumulation of ∆FosB in striatonigral neurons is causally related to the development of dyskinesia.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/efectos adversos , Enfermedad de Parkinson/complicaciones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neostriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxidopamina/administración & dosificación , Fosforilación
20.
Prog Neurobiol ; 132: 96-168, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26209473

RESUMEN

Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.


Asunto(s)
Antiparkinsonianos/efectos adversos , Sistema Nervioso Central/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/efectos adversos , Animales , Sistema Nervioso Central/efectos de los fármacos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA