Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(3): 1404-1419, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38050972

RESUMEN

Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ARN , Ribonucleasa P , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Ribonucleasa P/metabolismo , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(35): e2305049120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603767

RESUMEN

The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Complejo del Señalosoma COP9/genética , Catálisis , Núcleo Celular , Cromatografía de Afinidad , Ubiquitina-Proteína Ligasas
3.
Nucleic Acids Res ; 51(12): 6430-6442, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167006

RESUMEN

The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA. G-patch (gp) factors activate Prp43 in its cellular context enhancing the intrinsically low ATPase and RNA unwinding activity. It is unclear how the RNA loading process is accomplished by Prp43 and how it is regulated by its substrates, ATP and RNA, and the G-patch partners. We developed single-molecule (sm) FRET reporters on Prp43 from Chaetomium thermophilum to monitor the conformational dynamics of the RNA binding channel in Prp43 in real-time. We show that the channel can alternate between open and closed conformations. Binding of Pfa1(gp) and ATP shifts the distribution of states towards channel opening, facilitating the accommodation of RNA. After completion of the loading process, the channel remains firmly closed during successive cycles of ATP hydrolysis, ensuring stable interaction with the RNA and processive translocation. Without Pfa1(gp), it remains predominantly closed preventing efficient RNA loading. Our data reveal how the ligands of Prp43 regulate the structural dynamics of the RNA binding channel controlling the initial binding of RNA.


Asunto(s)
Chaetomium , ARN Helicasas DEAD-box , ARN , Adenosina Trifosfato/metabolismo , Chaetomium/química , Chaetomium/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , Conformación Molecular , ARN/metabolismo , ARN Helicasas/metabolismo , Empalme del ARN , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular
4.
Proc Natl Acad Sci U S A ; 119(48): e2203567119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409901

RESUMEN

The DEAH/RHA helicase Prp43 remodels protein-RNA complexes during pre-messenger RNA (mRNA) splicing and ribosome biogenesis. The helicase activity and ATP turnover are intrinsically low and become activated by G-patch (gp) factors in the specific cellular context. The gp motif connects the helicase core to the flexible C-terminal domains, but it is unclear how this affects RecA domain movement during catalysis and the unwinding of RNA substrates. We developed single-molecule Förster Resonance Energy Transfer (smFRET) reporters to study RecA domain movements within Prp43 in real time. Without Pfa1(gp), the domains approach each other adopting predominantly a closed conformation. The addition of Pfa1(gp) induces an open state, which becomes even more prevalent during interaction with RNA. In the open state, Prp43 has reduced contacts with bound nucleotide and shows rapid adenosine diphosphate (ADP) release accelerating the transition from the weak (ADP) to the strong (apo) RNA binding state. Using smFRET labels on the RNA to probe substrate binding and unwinding, we demonstrate that Pfa1(gp) enables Prp43(ADP) to switch between RNA-bound and RNA-unbound states instead of dissociating from the RNA. ATP binding to the apo-enzyme induces the translocation along the RNA, generating the unwinding force required to melt proximal RNA structures. During ATP turnover, Pfa1(gp) stimulates alternating of the RecA domains between open and closed states. Consequently, the translocation becomes faster than dissociation from the substrate in the ADP state, allowing processive movement along the RNA. We provide a mechanistic model of DEAH/RHA helicase motility and reveal the principles of Prp43 regulation by G-patch proteins.


Asunto(s)
ARN Helicasas DEAD-box , ADN Helicasas , ARN Helicasas DEAD-box/metabolismo , ARN/metabolismo , Adenosina Difosfato , Adenosina Trifosfato/metabolismo
5.
J Biol Chem ; 299(7): 104944, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343703

RESUMEN

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Asunto(s)
Arginina , Bacillus subtilis , Ornitina , Factor sigma , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo
6.
J Biol Chem ; 298(7): 102144, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714772

RESUMEN

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Asunto(s)
Proteínas Bacterianas , Fosfatos de Dinucleósidos , Adenina/metabolismo , Adenosina Monofosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo
7.
Biol Chem ; 404(8-9): 851-866, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441768

RESUMEN

Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Empalme del ARN
8.
Biol Chem ; 404(8-9): 791-805, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37210735

RESUMEN

Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Fenilalanina , Humanos , Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Sitios de Unión , Fenilalanina/química , Fenilalanina/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(6): 2948-2956, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974312

RESUMEN

The spliceosome consists of five small RNAs and more than 100 proteins. Almost 50% of the human spliceosomal proteins were predicted to be intrinsically disordered or to contain disordered regions, among them the G-patch protein Spp2. The G-patch region of Spp2 binds to the DEAH-box ATPase Prp2, and both proteins together are essential for promoting the transition from the Bact to the catalytically active B* spliceosome. Here we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that Spp2 is intrinsically disordered in solution. Crystal structures of a complex consisting of Prp2-ADP and the G-patch domain of Spp2 demonstrate that the G-patch gains a defined fold when bound to Prp2. While the N-terminal region of the G-patch always folds into an α-helix in five different crystal structures, the C-terminal part is able to adopt two alternative conformations. NMR studies further revealed that the N-terminal part of the Spp2 G-patch, which is the most conserved region in different G-patch proteins, transiently samples helical conformations, possibly facilitating a conformational selection binding mechanism. The structural analysis unveils the role of conserved residues of the G-patch in the dynamic interaction mode of Spp2 with Prp2, which is vital to maintain the binding during the Prp2 domain movements needed for RNA translocation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Unión Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
10.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
11.
Mol Cell Proteomics ; 19(12): 2157-2168, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33067342

RESUMEN

Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Péptidos/análisis , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Células HEK293 , Humanos , Espectrometría de Masas , Modelos Moleculares , Péptidos/química , Ribosomas/metabolismo
12.
Mol Cell Proteomics ; 19(7): 1161-1178, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32332106

RESUMEN

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Marcaje Isotópico/métodos , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía Liquida , Reactivos de Enlaces Cruzados/química , Complejo I de Transporte de Electrón/química , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación Oxidativa , Unión Proteica , Mapas de Interacción de Proteínas , Proteómica , Complejo Piruvato Deshidrogenasa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Espectrometría de Masas en Tándem
13.
Biol Chem ; 402(5): 561-579, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33857358

RESUMEN

RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Glicina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Helicasas DEAD-box/química , Glicina/química , Humanos , Proteínas de Unión al ARN/química
14.
RNA Biol ; 18(sup1): 382-396, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34241577

RESUMEN

The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded ßEßF-sheet of the QTRT2 subunit as an additional RNA-binding motif.


Asunto(s)
Guanina/metabolismo , Pentosiltransferasa/química , Pentosiltransferasa/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Pentosiltransferasa/genética , Conformación Proteica , ARN de Transferencia/genética
15.
RNA Biol ; 18(12): 2466-2479, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34006170

RESUMEN

TrmB belongs to the class I S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) and introduces a methyl group to guanine at position 7 (m7G) in tRNA. In tRNAs m7G is most frequently found at position 46 in the variable loop and forms a tertiary base pair with C13 and U22, introducing a positive charge at G46. The TrmB/Trm8 enzyme family is structurally diverse, as TrmB proteins exist in a monomeric, homodimeric, and heterodimeric form. So far, the exact enzymatic mechanism, as well as the tRNA-TrmB crystal structure is not known. Here we present the first crystal structures of B. subtilis TrmB in complex with SAM and SAH. The crystal structures of TrmB apo and in complex with SAM and SAH have been determined by X-ray crystallography to 1.9 Å (apo), 2.5 Å (SAM), and 3.1 Å (SAH). The obtained crystal structures revealed Tyr193 to be important during SAM binding and MTase activity. Applying fluorescence polarization, the dissociation constant Kd of TrmB and tRNAPhe was determined to be 0.12 µM ± 0.002 µM. Luminescence-based methyltransferase activity assays revealed cooperative effects during TrmB catalysis with half-of-the-site reactivity at physiological SAM concentrations. Structural data retrieved from small-angle x-ray scattering (SAXS), mass-spectrometry of cross-linked complexes, and molecular docking experiments led to the determination of the TrmB-tRNAPhe complex structure.


Asunto(s)
Bacillus subtilis/metabolismo , Mutación , ARN de Transferencia/química , ARN de Transferencia/metabolismo , S-Adenosilmetionina/metabolismo , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , ARN de Transferencia/genética , ARNt Metiltransferasas/genética
16.
Nature ; 520(7548): 567-70, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25707802

RESUMEN

Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution and all structures available to date have been limited to resolutions above 3 Å. Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65-2.9 Å resolution using spherical aberration (Cs)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 Å resolution is comparable to the best-resolved X-ray structure of the E. coli 70S ribosome (2.8 Å), but provides more detailed information (2.65 Å) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM-based model presents the currently most complete high-resolution structure of the E. coli ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/ultraestructura , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Antibacterianos/química , Antibacterianos/metabolismo , Microscopía por Crioelectrón/métodos , Ligandos , Modelos Moleculares , Factor Tu de Elongación Peptídica/metabolismo , Piridonas/química , Piridonas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Bacteriano/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribosomas/metabolismo
17.
Nucleic Acids Res ; 47(8): 4349-4362, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30828714

RESUMEN

DEAH-box adenosine triphosphatases (ATPases) play a crucial role in the spliceosome-mediated excision of pre-mRNA introns. Recent spliceosomal cryo-EM structures suggest that these proteins utilize translocation to apply forces on ssRNAs rather than direct RNA duplex unwinding to ensure global rearrangements. By solving the crystal structure of Prp22 in different adenosine nucleotide-free states, we identified two missing conformational snapshots of genuine DEAH-box ATPases that help to unravel the molecular mechanism of translocation for this protein family. The intrinsic mobility of the RecA2 domain in the absence of adenosine di- or triphosphate (ADP/ATP) and RNA enables DEAH-box ATPases to adopt different open conformations of the helicase core. The presence of RNA suppresses this mobility and stabilizes one defined open conformation when no adenosine nucleotide is bound. A comparison of this novel conformation with the ATP-bound state of Prp43 reveals that these ATPases cycle between closed and open conformations of the helicase core, which accommodate either a four- or five-nucleotide stack in the RNA-binding tunnel, respectively. The continuous repetition of these states enables these proteins to translocate in 3'-5' direction along an ssRNA with a step-size of one RNA nucleotide per hydrolyzed ATP. This ATP-driven motor function is maintained by a serine in the conserved motif V that senses the catalytic state and accordingly positions the RecA2 domain.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Chaetomium/química , ARN Helicasas DEAD-box/química , Proteínas Fúngicas/química , Factores de Empalme de ARN/química , ARN de Hongos/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Chaetomium/enzimología , Chaetomium/genética , Clonación Molecular , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica
18.
PLoS Genet ; 14(2): e1007141, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29401458

RESUMEN

The transition from vegetative growth to multicellular development represents an evolutionary hallmark linked to an oxidative stress signal and controlled protein degradation. We identified the Sem1 proteasome subunit, which connects stress response and cellular differentiation. The sem1 gene encodes the fungal counterpart of the human Sem1 proteasome lid subunit and is essential for fungal cell differentiation and development. A sem1 deletion strain of the filamentous fungus Aspergillus nidulans is able to grow vegetatively and expresses an elevated degree of 20S proteasomes with multiplied ATP-independent catalytic activity compared to wildtype. Oxidative stress induces increased transcription of the genes sem1 and rpn11 for the proteasomal deubiquitinating enzyme. Sem1 is required for stabilization of the Rpn11 deubiquitinating enzyme, incorporation of the ubiquitin receptor Rpn10 into the 19S regulatory particle and efficient 26S proteasome assembly. Sem1 maintains high cellular NADH levels, controls mitochondria integrity during stress and developmental transition.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/genética , Proliferación Celular , Proteínas Fúngicas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Aspergillus nidulans/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Especificidad de Órganos , Organismos Modificados Genéticamente , Complejo de la Endopetidasa Proteasomal/genética , Estabilidad Proteica , Ubiquitina/metabolismo
19.
PLoS Genet ; 14(12): e1007845, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30543681

RESUMEN

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Asunto(s)
Artrogriposis/genética , Genes Letales , Mutación , Proteínas de Complejo Poro Nuclear/genética , Alelos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Artrogriposis/embriología , Artrogriposis/fisiopatología , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Proteínas Musculares/metabolismo , Unión Neuromuscular/fisiopatología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/deficiencia , Linaje , Embarazo , Conformación Proteica , Receptores Nicotínicos/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/anomalías , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
20.
Genes Dev ; 27(4): 413-28, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23431055

RESUMEN

The spliceosome is a single-turnover enzyme that needs to be dismantled after catalysis to both release the mRNA and recycle small nuclear ribonucleoproteins (snRNPs) for subsequent rounds of pre-mRNA splicing. The RNP remodeling events occurring during spliceosome disassembly are poorly understood, and the composition of the released snRNPs are only roughly known. Using purified components in vitro, we generated post-catalytic spliceosomes that can be dissociated into mRNA and the intron-lariat spliceosome (ILS) by addition of the RNA helicase Prp22 plus ATP and without requiring the step 2 proteins Slu7 and Prp18. Incubation of the isolated ILS with the RNA helicase Prp43 plus Ntr1/Ntr2 and ATP generates defined spliceosomal dissociation products: the intron-lariat, U6 snRNA, a 20-25S U2 snRNP containing SF3a/b, an 18S U5 snRNP, and the "nineteen complex" associated with both the released U2 snRNP and intron-lariat RNA. Our system reproduces the entire ordered disassembly phase of the spliceosome with purified components, which defines the minimum set of agents required for this process. It enabled us to characterize the proteins of the ILS by mass spectrometry and identify the ATPase action of Prp43 as necessary and sufficient for dissociation of the ILS without the involvement of Brr2 ATPase.


Asunto(s)
Empalme del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Intrones , Factores de Empalme de ARN , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA