Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microvasc Res ; 136: 104164, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831406

RESUMEN

INTRODUCTION: Microcirculatory alterations are key mechanisms in sepsis pathophysiology leading to tissue hypoxia, edema formation, and organ dysfunction. Hyperspectral imaging (HSI) is an emerging imaging technology that uses tissue-light interactions to evaluate biochemical tissue characteristics including tissue oxygenation, hemoglobin content and water content. Currently, clinical data for HSI technologies in critical ill patients are still limited. METHODS AND ANALYSIS: TIVITA® Tissue System was used to measure Tissue oxygenation (StO2), Tissue Hemoglobin Index (THI), Near Infrared Perfusion Index (NPI) and Tissue Water Index (TWI) in 25 healthy volunteers and 25 septic patients. HSI measurement sites were the palm, the fingertip, and a suprapatellar knee area. Septic patients were evaluated on admission to the ICU (E), 6 h afterwards (E+6) and three times a day (t3-t9) within a total observation period of 72 h. Primary outcome was the correlation of HSI results with daily SOFA-scores. RESULTS: Serial HSI at the three measurement sites in healthy volunteers showed a low mean variance expressing high retest reliability. HSI at E demonstrated significantly lower StO2 and NPI as well as higher TWI at the palm and fingertip in septic patients compared to healthy volunteers. StO2 and TWI showed corresponding results at the suprapatellar knee area. In septic patients, palm and fingertip THI identified survivors (E-t4) and revealed predictivity for 28-day mortality (E). Fingertip StO2 and THI correlated to SOFA-score on day 2. TWI was consistently increased in relation to the TWI range of healthy controls during the observation time. Palm TWI correlated positively with SOFA scores on day 3. DISCUSSION: HSI results in septic patients point to a distinctive microcirculatory pattern indicative of reduced skin oxygenation and perfusion quality combined with increased blood pooling and tissue water content. THI might possess risk-stratification properties and TWI could allow tissue edema evaluation in critically ill patients. CONCLUSION: HSI technologies could open new perspectives in microcirculatory monitoring by visualizing oxygenation and perfusion quality combined with tissue water content in critically ill patients - a prerequisite for future tissue perfusion guided therapy concepts in intensive care medicine.


Asunto(s)
Imágenes Hiperespectrales , Microcirculación , Imagen de Perfusión , Pruebas en el Punto de Atención , Sepsis/diagnóstico por imagen , Piel/irrigación sanguínea , Espectroscopía Infrarroja Corta , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Agua Corporal/metabolismo , Estudios de Casos y Controles , Enfermedad Crítica , Femenino , Hemoglobinas/metabolismo , Humanos , Imágenes Hiperespectrales/instrumentación , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Oxígeno/metabolismo , Imagen de Perfusión/instrumentación , Proyectos Piloto , Sistemas de Atención de Punto , Valor Predictivo de las Pruebas , Estudios Prospectivos , Flujo Sanguíneo Regional , Sepsis/metabolismo , Sepsis/fisiopatología , Piel/metabolismo , Espectroscopía Infrarroja Corta/instrumentación , Factores de Tiempo
2.
Radiologe ; 60(10): 934-942, 2020 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-32857175

RESUMEN

BACKGROUND: Clinically, coronavirus disease 2019 (COVID-19) is associated with a wide range of symptoms, which can range from mild complaints of an upper respiratory infection to life-threatening hypoxic respiratory insufficiency and multiorgan failure. OBJECTIVE: The initially identified pulmonary damage patterns, such as diffuse alveolar damage in acute lung failure, are accompanied by new findings that draw a more complex scenario. These include microvascular involvement and a wide range of associated pathologies of multiple organ systems. A back-scaling of microstructural vascular changes is possible via targeted correlation of pathological autopsy results with radiological imaging. MATERIAL AND METHODS: Radiological and pathological correlation as well as microradiological imaging to investigate microvascular involvement in fatal COVID-19. RESULTS: The cases of two COVID-19 patients are presented. Patient 1 showed a relative hypoperfusion in lung regions that did not have typical COVID-19 infiltrates; the targeted post-mortem correlation also showed subtle signs of microvascular damage even in these lung sections. Patient 2 showed both radiologically and pathologically advanced typical COVID-19 destruction of lung structures and the case illustrates the damage patterns of the blood-air barrier. The perfusion deficit of the intestinal wall shown in computed tomography of patient 2 could not ultimately clearly be microscopically attributed to intestinal microvascular damage. CONCLUSION: In addition to microvascular thrombosis, our results indicate a functional pulmonary vasodysregulation as part of the pathophysiology during the vascular phase of COVID-19. The clinical relevance of autopsies and the integration of radiological imaging findings into histopathological injury patterns must be emphasized for a better understanding of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , COVID-19 , Humanos , Microvasos , SARS-CoV-2
13.
Anaesthesiologie ; 71(11): 852-857, 2022 11.
Artículo en Alemán | MEDLINE | ID: mdl-35925192

RESUMEN

Percutaneous hepatic chemosaturation is a treatment option for unresectable primary or secondary liver tumors. In this procedure the part of the inferior vena cava (VCI) that collects blood from the hepatic veins is isolated using a double balloon catheter. Like this, systemic distribution of the chemotherapeutic agent melphalan which is administered via the hepatic artery can be prevented. After passage through the liver and drainage from the retrohepatic VCI, the chemosaturated blood passes through two extracorporeal filters. Subsequently, the filtered blood is returned via the jugular vein. The procedure is often accompanied by severe hemodynamic instability, the cause of which is still not completely understood. In addition, coagulation management of extracorporeal circulation is often challenging. The authors report a case in which a thrombus formed in the returning leg of the extracorporeal circulation despite sufficient activated clotting time (ACT). Targeted problem search and resolution were necessary simultaneously to hemodynamic stabilization and interdisciplinary collaboration to successfully perform the intervention and provide the patient with safe treatment.


Asunto(s)
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Melfalán/uso terapéutico , Circulación Extracorporea , Anticoagulantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA