Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 612(7938): 100-105, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450906

RESUMEN

The bony palate diagnoses the two deepest clades of extant birds: Neognathae and Palaeognathae1-5. Neognaths exhibit unfused palate bones and generally kinetic skulls, whereas palaeognaths possess comparatively rigid skulls with the pterygoid and palatine fused into a single element, a condition long considered ancestral for crown birds (Neornithes)3,5-8. However, fossil evidence of palatal remains from taxa close to the origin of Neornithes is scarce, hindering strong inferences regarding the ancestral condition of the neornithine palate. Here we report a new taxon of toothed Late Cretaceous ornithurine bearing a pterygoid that is remarkably similar to those of the extant neognath clade Galloanserae (waterfowl + landfowl). Janavis finalidens, gen. et sp. nov., is generally similar to the well-known Mesozoic ornithurine Ichthyornis in its overall morphology, although Janavis is much larger and exhibits a substantially greater degree of postcranial pneumaticity. We recovered Janavis as the first-known well-represented member of Ichthyornithes other than Ichthyornis, clearly substantiating the persistence of the clade into the latest Cretaceous9. Janavis confirms the presence of an anatomically neognathous palate in at least some Mesozoic non-crown ornithurines10-12, suggesting that pterygoids similar to those of extant Galloanserae may be plesiomorphic for crown birds. Our results, combined with recent evidence on the ichthyornithine palatine12, overturn longstanding assumptions about the ancestral crown bird palate, and should prompt reevaluation of the purported galloanseran affinities of several bizarre early Cenozoic groups such as the 'pseudotoothed birds' (Pelagornithidae)13-15.


Asunto(s)
Aves , Fósiles , Filogenia , Animales , Aves/anatomía & histología , Aves/clasificación , Cráneo/anatomía & histología
2.
Nature ; 579(7799): 397-401, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188952

RESUMEN

Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period1-3, but stem-lineage representatives of the deepest subclades of crown birds-Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)-are unknown from the Mesozoic era. As a result, key questions related to the ecology4,5, biogeography3,6,7 and divergence times1,8-10 of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds10,11. Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era12, and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality13 provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds3, and its relatively small size and possible littoral ecology may corroborate proposed ecological filters4,5,9 that influenced the persistence of crown birds through the end-Cretaceous mass extinction.


Asunto(s)
Aves/clasificación , Fósiles , Filogenia , Animales , Bélgica , Aves/anatomía & histología , Femenino , Masculino , Cráneo/anatomía & histología
3.
Proc Biol Sci ; 291(2016): 20232618, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351798

RESUMEN

The origin of crown birds (Neornithes) remains contentious owing to conflicting divergence time hypotheses obtained from alternative sources of data. The fossil record suggests limited diversification of Neornithes in the Late Mesozoic and a substantial radiation in the aftermath of the Cretaceous-Palaeogene (K-Pg) mass extinction, approximately 66 Ma. Molecular clock studies, however, have yielded estimates for neornithine origins ranging from the Early Cretaceous (130 Ma) to less than 10 Myr before the K-Pg. We use Bayes factors to compare the fit of node ages from different molecular clock studies to an independent morphological dataset. Our results allow us to reject scenarios of crown bird origins deep in the Early Cretaceous, as well as an origin of crown birds within the last 10 Myr of the Cretaceous. The scenario best supported by our analyses is one where Neornithes originated between the Early and Late Cretaceous (ca 100 Ma), while numerous divergences within major neoavian clades either span or postdate the K-Pg. This study affirms the importance of the K-Pg on the diversification of modern birds, and the potential of combined-evidence tip-dating analyses to illuminate recalcitrant 'rocks versus clocks' debates.


Asunto(s)
Aves , Extinción Biológica , Animales , Filogenia , Teorema de Bayes , Aves/anatomía & histología , Fósiles , Evolución Biológica
4.
Proc Biol Sci ; 291(2017): 20232250, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38378144

RESUMEN

In birds, the quadrate connects the mandible and skull, and plays an important role in cranial kinesis. Avian quadrate morphology may therefore be assumed to have been influenced by selective pressures related to feeding ecology, yet large-scale variation in quadrate morphology and its potential relationship with ecology have never been quantitatively investigated. Here, we used geometric morphometrics and phylogenetic comparative methods to quantify morphological variation of the quadrate and its relationship with key ecological features across a wide phylogenetic sample. We found non-significant associations between quadrate shape and feeding ecology across different scales of phylogenetic comparison; indeed, allometry and phylogeny exhibit stronger relationships with quadrate shape than ecological features. We show that similar quadrate shapes are associated with widely varying dietary ecologies (one-to-many mapping), while divergent quadrate shapes are associated with similar dietary ecologies (many-to-one mapping). Moreover, we show that the avian quadrate evolves as an integrated unit and exhibits strong associations with the morphologies of neighbouring bones. Our results collectively illustrate that quadrate shape has evolved jointly with other elements of the avian kinetic system, with the major crown bird lineages exploring alternative quadrate morphologies, highlighting the potential diagnostic value of quadrate morphology in investigations of bird systematics.


Asunto(s)
Aves , Cráneo , Animales , Filogenia , Aves/anatomía & histología , Cráneo/anatomía & histología , Cabeza , Mandíbula , Evolución Biológica
5.
Nature ; 557(7703): 96-100, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720636

RESUMEN

The skull of living birds is greatly modified from the condition found in their dinosaurian antecedents. Bird skulls have an enlarged, toothless premaxillary beak and an intricate kinetic system that includes a mobile palate and jaw suspensorium. The expanded avian neurocranium protects an enlarged brain and is flanked by reduced jaw adductor muscles. However, the order of appearance of these features and the nature of their earliest manifestations remain unknown. The Late Cretaceous toothed bird Ichthyornis dispar sits in a pivotal phylogenetic position outside living groups: it is close to the extant avian radiation but retains numerous ancestral characters1-3. Although its evolutionary importance continues to be affirmed3-8, no substantial new cranial material of I. dispar has been described beyond incomplete remains recovered in the 1870s. Jurassic and Cretaceous Lagerstätten have yielded important avialan fossils, but their skulls are typically crushed and distorted 9 . Here we report four three-dimensionally preserved specimens of I. dispar-including an unusually complete skull-as well as two previously overlooked elements from the Yale Peabody Museum holotype, YPM 1450. We used these specimens to generate a nearly complete three-dimensional reconstruction of the I. dispar skull using high-resolution computed tomography. Our study reveals that I. dispar had a transitional beak-small, lacking a palatal shelf and restricted to the tips of the jaws-coupled with a kinetic system similar to that of living birds. The feeding apparatus of extant birds therefore evolved earlier than previously thought and its components were functionally and developmentally coordinated. The brain was relatively modern, but the temporal region was unexpectedly dinosaurian: it retained a large adductor chamber bounded dorsally by substantial bony remnants of the ancestral reptilian upper temporal fenestra. This combination of features documents that important attributes of the avian brain and palate evolved before the reduction of jaw musculature and the full transformation of the beak.


Asunto(s)
Aves/anatomía & histología , Dinosaurios/anatomía & histología , Fósiles , Filogenia , Cráneo/anatomía & histología , Animales , Pico/anatomía & histología , Aves/clasificación , Cabeza/anatomía & histología , Maxilares/anatomía & histología
6.
Proc Biol Sci ; 290(1995): 20230160, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36919426

RESUMEN

Skeletal pneumaticity is a key feature of extant avian structure and biology, which first evolved among the non-flying archosaurian ancestors of birds. The widespread presence of air-filled bones across the postcranial skeleton is unique to birds among living vertebrates, but the true extent of skeletal pneumaticity has never been quantitatively investigated-hindering fundamental insights into the evolution of this key avian feature. Here, we use microCT scans of fresh, frozen birds to directly quantify the fraction of humerus volume occupied by air across a phylogenetically diverse taxon sample to test longstanding hypotheses regarding the evolution and function of avian skeletal pneumatization. Among other insights, we document weak positive allometry of internal air volume with humeral size among pneumatized humeri and provide strong support that humeral size, body mass, aquatic diving, and the presence or absence of pneumaticity all have independent effects on cortical bone thickness. Our quantitative evaluation of humeral pneumaticity across extant avian phylogeny sheds new light on the evolution and ontogenetic progression of an important aspect of avian skeletal architecture, and suggests that the last common ancestor of crown birds possessed a highly pneumatized humerus.


Asunto(s)
Aire , Evolución Biológica , Aves , Húmero , Animales , Aves/anatomía & histología , Fósiles/anatomía & histología , Filogenia , Microtomografía por Rayos X , Húmero/anatomía & histología , Húmero/diagnóstico por imagen , Hueso Cortical/anatomía & histología , Hueso Cortical/diagnóstico por imagen
7.
Proc Biol Sci ; 290(1994): 20222020, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883281

RESUMEN

Avian skeletal morphology is associated with locomotor function, including flight style, swimming and terrestrial locomotion, and permits informed inferences on locomotion in extinct taxa. The fossil taxon Ichthyornis (Avialae: Ornithurae) has long been regarded as highly aerial, with flight similar to terns or gulls (Laridae), and skeletal features resembling foot-propelled diving adaptations. However, rigorous testing of locomotor hypotheses has yet to be performed on Ichthyornis, despite its notable phylogenetic position as one of the most crownward stem birds. We analysed separate datasets of three-dimensional sternal shape (geometric morphometrics) and skeletal proportions (linear measurements across the skeleton), to examine how well these data types predict locomotor traits in Neornithes. We then used this information to infer locomotor capabilities of Ichthyornis. We find strong support for both soaring and foot-propelled swimming capabilities in Ichthyornis. Further, sternal shape and skeletal proportions provide complementary information on avian locomotion: skeletal proportions allow better predictions of the capacity for flight, whereas sternal shape predicts variation in more specific locomotor abilities such as soaring, foot-propelled swimming and escape burst flight. These results have important implications for future studies of extinct avialan ecology and underscore the importance of closely considering sternum morphology in investigations of fossil bird locomotion.


Asunto(s)
Charadriiformes , Esternón , Animales , Filogenia , Natación , Aclimatación
8.
J Anat ; 243(5): 729-757, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37358291

RESUMEN

Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT). Origins and insertions of the pectoral flight musculature of N. pentlandii are generally consistent with those of other extant volant birds specialized for burst flight, and the entire suite of presumed ancestral neornithine flight muscles are present in N. pentlandii with the exception of the biceps slip. The pectoralis and supracoracoideus muscles are robust, similar to the condition in other extant burst-flying birds such as many extant Galliformes. Contrary to the condition in most extant Neognathae (the sister clade to Palaeognathae), the insertion of the pronator superficialis has a greater distal extent than the pronator profundus, although most other anatomical observations are broadly consistent with the conditions observed in extant neognaths. This work will help form a basis for future comparative studies of the avian musculoskeletal system, with implications for reconstructing the flight apparatus of ancestral crown birds and clarifying musculoskeletal modifications underlying the convergent origins of ratite flightlessness.


Asunto(s)
Paleognatos , Animales , Filogenia , Paleognatos/anatomía & histología , Aves/fisiología , Músculo Esquelético , Evolución Biológica , Vuelo Animal
9.
J Anat ; 242(3): 495-509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36070480

RESUMEN

The hyper-diverse clade Passeriformes (crown group passerines) comprises over half of extant bird diversity, yet disproportionately few studies have targeted passerine comparative anatomy on a broad phylogenetic scale. This general lack of research attention hinders efforts to interpret the passerine fossil record and obscures patterns of morphological evolution across one of the most diverse clades of extant vertebrates. Numerous potentially important crown passeriform fossils have proven challenging to place phylogenetically, due in part to a paucity of phylogenetically informative characters from across the passerine skeleton. Here, we present a detailed analysis of the morphology of extant passerine carpometacarpi, which are relatively abundant components of the passerine fossil record. We sampled >70% of extant family-level passerine clades (132 extant species) as well as several fossils from the Oligocene of Europe and scored them for 54 phylogenetically informative carpometacarpus characters optimised on a recently published phylogenomic scaffold. We document a considerable amount of previously undescribed morphological variation among passerine carpometacarpi, and, despite high levels of homoplasy, our results support the presence of representatives of both crown Passeri and crown Tyranni in Europe during the Oligocene.


Asunto(s)
Fósiles , Passeriformes , Animales , Filogenia , Passeriformes/anatomía & histología , Anatomía Comparada , Europa (Continente) , Evolución Biológica
10.
Proc Biol Sci ; 289(1983): 20221398, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168759

RESUMEN

Among terrestrial vertebrates, only crown birds (Neornithes) rival mammals in terms of relative brain size and behavioural complexity. Relatedly, the anatomy of the avian central nervous system and associated sensory structures, such as the vestibular system of the inner ear, are highly modified with respect to those of other extant reptile lineages. However, a dearth of three-dimensional Mesozoic fossils has limited our knowledge of the origins of the distinctive endocranial structures of crown birds. Traits such as an expanded, flexed brain, a ventral connection between the brain and spinal column, and a modified vestibular system have been regarded as exclusive to Neornithes. Here, we demonstrate all of these 'advanced' traits in an undistorted braincase from an Upper Cretaceous enantiornithine bonebed in southeastern Brazil. Our discovery suggests that these crown bird-like endocranial traits may have originated prior to the split between Enantiornithes and the more crownward portion of avian phylogeny over 140 Ma, while coexisting with a remarkably plesiomorphic cranial base and posterior palate region. Altogether, our results support the interpretation that the distinctive endocranial morphologies of crown birds and their Mesozoic relatives are affected by complex trade-offs between spatial constraints during development.


Asunto(s)
Dinosaurios , Oído Interno , Animales , Evolución Biológica , Aves/anatomía & histología , Encéfalo , Dinosaurios/anatomía & histología , Oído Interno/anatomía & histología , Fósiles , Mamíferos , Filogenia , Base del Cráneo/anatomía & histología
11.
Proc Natl Acad Sci U S A ; 116(26): 12895-12900, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182570

RESUMEN

Many higher level avian clades are restricted to Earth's lower latitudes, leading to historical biogeographic reconstructions favoring a Gondwanan origin of crown birds and numerous deep subclades. However, several such "tropical-restricted" clades (TRCs) are represented by stem-lineage fossils well outside the ranges of their closest living relatives, often on northern continents. To assess the drivers of these geographic disjunctions, we combined ecological niche modeling, paleoclimate models, and the early Cenozoic fossil record to examine the influence of climatic change on avian geographic distributions over the last ∼56 million years. By modeling the distribution of suitable habitable area through time, we illustrate that most Paleogene fossil-bearing localities would have been suitable for occupancy by extant TRC representatives when their stem-lineage fossils were deposited. Potentially suitable habitat for these TRCs is inferred to have become progressively restricted toward the tropics throughout the Cenozoic, culminating in relatively narrow circumtropical distributions in the present day. Our results are consistent with coarse-scale niche conservatism at the clade level and support a scenario whereby climate change over geological timescales has largely dictated the geographic distributions of many major avian clades. The distinctive modern bias toward high avian diversity at tropical latitudes for most hierarchical taxonomic levels may therefore represent a relatively recent phenomenon, overprinting a complex biogeographic history of dramatic geographic range shifts driven by Earth's changing climate, variable persistence, and intercontinental dispersal. Earth's current climatic trajectory portends a return to a megathermal state, which may dramatically influence the geographic distributions of many range-restricted extant clades.


Asunto(s)
Distribución Animal , Aves/fisiología , Cambio Climático , Fósiles , Animales , Biomasa
12.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936315

RESUMEN

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Asunto(s)
Passeriformes , Animales , Australia , Biodiversidad , Evolución Biológica , Fósiles , Nueva Zelanda , Passeriformes/clasificación , Passeriformes/genética , Passeriformes/fisiología , Filogenia
13.
Nature ; 588(7837): 221-222, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239771
14.
Nature ; 525(7568): 239-42, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26331544

RESUMEN

Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.


Asunto(s)
Fósiles , Filogenia , Cráneo/anatomía & histología , Tortugas/anatomía & histología , Animales , Modelos Biológicos , Sudáfrica
15.
Nature ; 526(7574): 569-73, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26444237

RESUMEN

Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves--a clade that encompasses nearly all living bird species--remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 × 10(7) bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades--Columbea and Passerea--were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.


Asunto(s)
Aves/clasificación , Aves/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Caimanes y Cocodrilos/genética , Animales , Teorema de Bayes , Evolución Molecular , Extinción Biológica , Genómica , Funciones de Verosimilitud , Paleontología
16.
J Hum Evol ; 140: 102384, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-28966047

RESUMEN

Fossil bird remains from the Pliocene hominin-bearing locality of Kanapoi comprise >100 elements representing at least 10 avian families, including previously undescribed elements referred to the 'giant' Pliocene marabou stork Leptoptilos cf. falconeri. The taxonomic composition of the Kanapoi fossil avifauna reveals an assemblage with a substantial aquatic component, corroborating geological evidence of this locality's close proximity to a large, slow-moving body of water. Both the taxonomic composition and relative abundance of avian higher-level clades at Kanapoi stand in stark contrast to the avifauna from the slightly older (∼4.4 Ma vs. 4.2 Ma) hominin-bearing Lower Aramis Member of Ethiopia, which has been interpreted as representing a mesic woodland paleoenvironment far from water. In general, the taxonomic composition of the Kanapoi avifauna resembles that from the Miocene hominoid-bearing locality of Lothagam (though Kanapoi is more diverse), and the aquatic character of the Kanapoi avifauna supports the idea that the environmental conditions experienced by Australopithecus anamensis at Kanapoi were markedly different from those experienced by Ardipithecus ramidus at Aramis. Additionally, the relative abundance of marabou stork (Leptoptilos) remains at Kanapoi may suggest a longstanding commensal relationship between total-clade humans and facultatively scavenging marabous. Additional avian remains from nearby fossil localities (e.g., the Nachukui Formation), ranging in age from 3.26 to 0.8 Ma, reveal the long-term persistence of an aquatic avifauna in the region.


Asunto(s)
Evolución Biológica , Aves , Ecosistema , Fósiles , Hominidae , Animales , Biota , Kenia , Rasgos de la Historia de Vida
17.
Syst Biol ; 67(1): 1-13, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973546

RESUMEN

Survivorship following major mass extinctions may be associated with a decrease in body size-a phenomenon called the Lilliput Effect. Body size is a strong predictor of many life history traits (LHTs), and is known to influence demography and intrinsic biological processes. Pronounced changes in organismal size throughout Earth history are therefore likely to be associated with concomitant genome-wide changes in evolutionary rates. Here, we report pronounced heterogeneity in rates of molecular evolution (varying up to $\sim$20-fold) across a large-scale avian phylogenomic data set and show that nucleotide substitution rates are strongly correlated with body size and metabolic rate. We also identify potential body size reductions associated with the Cretaceous-Paleogene (K-Pg) transition, consistent with a Lilliput Effect in the wake of that mass extinction event. We posit that selection for reduced body size across the K-Pg extinction horizon may have resulted in transient increases in substitution rate along the deepest branches of the extant avian tree of life. This "hidden" rate acceleration may result in both strict and relaxed molecular clocks over-estimating the age of the avian crown group through the relationship between life history and demographic parameters that scale with molecular substitution rate. If reductions in body size (and/or selection for related demographic parameters like short generation times) are a common property of lineages surviving mass extinctions, this phenomenon may help resolve persistent divergence time debates across the tree of life. Furthermore, our results suggest that selection for certain LHTs may be associated with deterministic molecular evolutionary outcomes.


Asunto(s)
Tamaño Corporal/genética , Evolución Molecular , Extinción Biológica , Sustitución de Aminoácidos/genética , Animales , Fósiles , Rasgos de la Historia de Vida
18.
BMC Evol Biol ; 18(1): 102, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29936914

RESUMEN

BACKGROUND: Earth's lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the world. RESULTS: Our phylogenetic analyses support the enigmatic fossil bird Foro panarium Olson 1992 from the early Eocene (Wasatchian) of Wyoming as a stem turaco (Neornithes: Pan-Musophagidae), a clade that is presently endemic to sub-Saharan Africa. Our analyses offer the first well-supported evidence for a stem musophagid (and therefore a useful fossil calibration for avian molecular divergence analyses), and reveal surprising new information on the early morphology and biogeography of this clade. Total-clade Musophagidae is identified as a potential participant in dispersal via the recently proposed 'North American Gateway' during the Palaeogene, and new biogeographic analyses illustrate the importance of the fossil record in revealing the complex historical biogeography of crown birds across geological timescales. CONCLUSIONS: In the Palaeogene, total-clade Musophagidae was distributed well outside the range of crown Musophagidae in the present day. This observation is consistent with similar biogeographic observations for numerous other modern bird clades, illustrating shortcomings of historical biogeographic analyses that do not incorporate information from the avian fossil record.


Asunto(s)
Aves/clasificación , Filogeografía , Animales , Teorema de Bayes , Aves/anatomía & histología , Calibración , Fósiles , Miembro Posterior/anatomía & histología , Funciones de Verosimilitud , Filogenia , Estados Unidos
19.
Biol Lett ; 13(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28679696

RESUMEN

Recent phylogenetic studies question the monophyly of ratites (large, flightless birds incorporating ostriches, rheas, kiwis, emus and cassowaries), suggesting their paraphyly with respect to flying tinamous (Tinamidae). Flightlessness and large body size have thus likely evolved repeatedly among ratites, and separately in ostriches (Struthio) and emus (Dromaius). Here, we test this hypothesis with data from wing developmental trajectories in ostriches, emus, tinamous and chickens. We find the rate of ostrich embryonic wing growth falls within the range of variation exhibited by flying taxa (tinamous and chickens), but that of emus is extremely slow. These results indicate flightlessness was acquired by different developmental mechanisms in the ancestors of ostriches (peramorphosis) and the emu-cassowary clade (paedomorphosis), and corroborate the hypothesis that flight loss has evolved repeatedly among ratites.


Asunto(s)
Paleognatos , Animales , Filogenia
20.
J Anat ; 229(2): 173-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26403623

RESUMEN

The rapidly expanding interest in, and availability of, digital tomography data to visualize casts of the vertebrate endocranial cavity housing the brain (endocasts) presents new opportunities and challenges to the field of comparative neuroanatomy. The opportunities are many, ranging from the relatively rapid acquisition of data to the unprecedented ability to integrate critically important fossil taxa. The challenges consist of navigating the logistical barriers that often separate a researcher from high-quality data and minimizing the amount of non-biological variation expressed in endocasts - variation that may confound meaningful and synthetic results. Our purpose here is to outline preferred approaches for acquiring digital tomographic data, converting those data to an endocast, and making those endocasts as meaningful as possible when considered in a comparative context. This review is intended to benefit those just getting started in the field but also serves to initiate further discussion between active endocast researchers regarding the best practices for advancing the discipline. Congruent with the theme of this volume, we draw our examples from birds and the highly encephalized non-avian dinosaurs that comprise closely related outgroups along their phylogenetic stem lineage.


Asunto(s)
Anatomía Comparada/métodos , Aves/anatomía & histología , Encéfalo/anatomía & histología , Dinosaurios/anatomía & histología , Imagenología Tridimensional/métodos , Neuroimagen/métodos , Animales , Fósiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA