Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 156(3): 413-27, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485452

RESUMEN

The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.


Asunto(s)
Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Miosinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Células Cultivadas , Humanos , Proteínas de la Membrana/química , Ratones , Datos de Secuencia Molecular , Fosforilación , Ratas , Alineación de Secuencia
2.
Cell ; 139(2): 337-51, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837035

RESUMEN

Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid-binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends on PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Actinas/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Aparato de Golgi/química , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Transportadoras/metabolismo
3.
J Lipid Res ; 60(2): 269-275, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30266835

RESUMEN

GOLPH3 is a peripheral membrane protein localized to the Golgi and its vesicles, but its purpose had been unclear. We found that GOLPH3 binds specifically to the phosphoinositide phosphatidylinositol(4)phosphate [PtdIns(4)P], which functions at the Golgi to promote vesicle exit for trafficking to the plasma membrane. PtdIns(4)P is enriched at the trans-Golgi and so recruits GOLPH3. Here, a GOLPH3 complex is formed when it binds to myosin18A (MYO18A), which binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi; interference with this GOLPH3 complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in humans, likely through multiple mechanisms that activate secretory trafficking. In this review, we summarize the literature that identifies the nature of the GOLPH3 complex and its role in cancer. We also consider the GOLPH3 complex as a hub with the potential to reveal regulation of the Golgi and suggest the possibility of GOLPH3 complex inhibition as a therapeutic approach in cancer.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Transporte Biológico , Humanos
4.
J Lipid Res ; 60(4): 747-752, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718284

RESUMEN

The discovery of the phosphatidylinositol-3-kinase (PI3K) pathway was a major advance in understanding growth factor signaling. The high frequency of PI3K pathway mutations in many cancers has encouraged a new field targeting cancer driver mutations. Although there have been many successes, targeting PI3K itself has proven challenging, in part because of its multiple isoforms with distinct roles. Despite promising preclinical results, development of PI3K inhibitors as pharmacologic anticancer agents has been limited by modest single-agent efficacy and significant adverse effects. If we could overcome these limitations, PI3K inhibitors would be a powerful cancer-fighting tool. Data from phase III clinical trials yields insight into some of the problems with PI3K inhibitors. Recent advances have shed light on the mechanisms of tumor resistance to PI3K inhibitors via feedback pathways that cause elevated insulin levels that then activate the same PI3K pathways that are the targets of inhibition. Improving our understanding of the complex regulatory feedback pathways that activate in response to PI3K inhibition will reveal ways to increase the efficacy of PI3K inhibitors and reduce adverse effects, increasing the usefulness of this class as a treatment option for multiple cancer types.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología
5.
J Biol Chem ; 292(34): 14308-14309, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842476

RESUMEN

Phosphatidylserine (PtdSer) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) have been implicated in the maintenance of caveolae, but direct evidence that these lipids are required for normal caveolar structure and dynamics in living cells has been lacking. A new study by Fairn and colleagues uses sophisticated tools to perturb specific lipids in living cells to assess the consequences for caveolae. This study demonstrates disparate roles for these lipids in the stability and mobility of caveolae and points the way for future work to understand how these lipids contribute to the biology of caveolae.


Asunto(s)
Caveolas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Caveolas/química , Caveolinas/química , Caveolinas/metabolismo , Membrana Celular/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Unión a Fosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilserinas/química , Multimerización de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Transporte Vesicular
6.
Nature ; 451(7181): 964-9, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18288188

RESUMEN

Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Fosfatidilinositoles/metabolismo , Sistemas de Mensajero Secundario , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacología , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Insulina/farmacología , Metabolismo de los Lípidos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas , Sistemas de Mensajero Secundario/efectos de los fármacos
7.
Dev Biol ; 372(1): 17-27, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23000359

RESUMEN

The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mesodermo/metabolismo , Animales , Sitios de Unión , Membrana Celular/metabolismo , Movimiento Celular , Drosophila/genética , Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Transducción de Señal
8.
J Biol Chem ; 287(33): 27637-47, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22745132

RESUMEN

Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process.


Asunto(s)
Aparato de Golgi/metabolismo , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Liberación del Virus/fisiología , Transporte Biológico Activo/genética , Línea Celular Tumoral , Aparato de Golgi/genética , Aparato de Golgi/virología , Hepacivirus/genética , Hepatitis C/genética , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Proteínas de la Membrana/genética , Miosinas/genética , Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Virión/genética , Virión/metabolismo
9.
Cell Rep ; 41(4): 111538, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288700

RESUMEN

Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.


Asunto(s)
Proproteína Convertasa 9 , S-Nitrosotioles , Ratones , Animales , Proteínas/metabolismo , Oxidorreductasas/metabolismo , S-Nitrosotioles/metabolismo , Homeostasis , Óxido Nítrico/metabolismo , Proteínas de la Membrana
10.
J Cell Biol ; 170(3): 455-64, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16043515

RESUMEN

Phosphoinositide (PI) 3-kinase is required for most insulin and insulin-like growth factor (IGF) 1-dependent cellular responses. The p85 regulatory subunit of PI 3-kinase is required to mediate the insulin-dependent recruitment of PI 3-kinase to the plasma membrane, yet mice with reduced p85 expression have increased insulin sensitivity. To further understand the role of p85, we examined IGF-1-dependent translocation of p85alpha by using a green fluorescence protein (GFP)-tagged p85alpha (EGFP-p85alpha). In response to IGF-1, but not to PDGF signaling, EGFP-p85alpha translocates to discrete foci in the cell. These foci contain the insulin receptor substrate (IRS) 1 adaptor molecule, and their formation requires the binding of p85 to IRS-1. Surprisingly, monomeric p85 is preferentially localized to these foci compared with the p85-p110 dimer, and these foci are not sites of phosphatidylinositol-3,4,5-trisphosphate production. Ultrastructural analysis reveals that p85-IRS-1 foci are cytosolic protein complexes devoid of membrane. These results suggest a mechanism of signal down-regulation of IRS-1 that is mediated by monomeric p85 through the formation of a sequestration complex between p85 and IRS-1.


Asunto(s)
Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Citosol/metabolismo , Dimerización , Regulación hacia Abajo , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Sustrato del Receptor de Insulina , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptor IGF Tipo 1/agonistas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tirosina/metabolismo
11.
Adv Biol Regul ; 75: 100661, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668661

RESUMEN

The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.


Asunto(s)
Aparato de Golgi/patología , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas/fisiología , Vesículas Transportadoras
12.
Dev Cell ; 2(4): 407-10, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11970891

RESUMEN

The 2002 Keystone Symposium on "Regulation of Cellular Responses by Lipid Mediators" provided a lively and active forum to discuss research in lipid signaling. This meeting review can provide only a glimpse into the diversity of research presented. Here we have chosen to highlight a group of exciting presentations describing novel features of the temporal and spatial regulation of phosphoinositides and their downstream targets.


Asunto(s)
Metabolismo de los Lípidos , Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas Fosfatasas/fisiología , Transducción de Señal/fisiología
13.
J Cell Biol ; 166(2): 205-11, 2004 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-15249580

RESUMEN

The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Evolución Molecular , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/biosíntesis , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Schizosaccharomyces/ultraestructura
14.
Genes (Basel) ; 10(3)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934642

RESUMEN

The Golgi organelle duplicates its protein and lipid content to segregate evenly between two daughter cells after mitosis. However, how Golgi biogenesis is regulated during interphase remains largely unknown. Here we show that messenger RNA (mRNA) expression of GOLPH3 and GOLGA2, two genes encoding Golgi proteins, is induced specifically in G1 phase, suggesting a link between cell cycle regulation and Golgi growth. We have examined the role of E2F transcription factors, critical regulators of G1 to S progression of the cell cycle, in the expression of Golgi proteins during interphase. We show that promoter activity for GOLPH3, a Golgi protein that is also oncogenic, is induced by E2F1-3 and repressed by E2F7. Mutation of the E2F motifs present in the GOLPH3 promoter region abrogates E2F1-mediated induction of a GOLPH3 luciferase reporter construct. Furthermore, we identify a critical CREB/ATF element in the GOLPH3 promoter that is required for its steady state and ATF2-induced expression. Interestingly, depletion of GOLPH3 with small interfering RNA (siRNA) delays the G1 to S transition in synchronized U2OS cells. Taken together, our results reveal a link between cell cycle regulation and Golgi function, and suggest that E2F-mediated regulation of Golgi genes is required for the timely progression of the cell cycle.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Factores de Transcripción E2F/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Animales , Sitios de Unión , Ciclo Celular , Línea Celular Tumoral , Regulación de la Expresión Génica , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Células 3T3 NIH , Fosfoproteínas/genética , Regiones Promotoras Genéticas
15.
Dev Cell ; 50(5): 573-585.e5, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31231041

RESUMEN

Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.


Asunto(s)
Aparato de Golgi/metabolismo , Liposomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Vías Secretoras , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Proteínas de la Membrana/química , Miosinas/metabolismo , Fosfatidilinositoles/química , Unión Proteica , Dominios Proteicos
16.
Curr Biol ; 15(15): 1407-12, 2005 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-16085494

RESUMEN

Phosphoinositides play important roles in regulating the cytoskeleton and vesicle trafficking, potentially important processes at the cleavage furrow. However, it remains unclear which, if any, of the phosphoinositides play a role during cytokinesis. A systematic analysis to determine if any of the phosphoinositides might be present or of functional importance at the cleavage furrow has not been published. Several studies hint at a possible role for one or more phosphoinositides at the cleavage furrow. The best of these are genetic data identifying mutations in phosphoinositide-modifying enzymes (a PtdIns(4)P-5-kinase in S. pombe and a PI-4-kinase in D. melanogaster) that interfere with cytokinesis. The genetic nature of these experiments leaves questions as to how direct may be their contribution to cytokinesis. Here we show that a single phosphoinositide, PtdIns(4,5)P2, specifically accumulates at the furrow. Interference with PtdIns(4,5)P2 interferes with adhesion of the plasma membrane to the contractile ring at the furrow. Finally, four distinct interventions to specifically interfere with PtdIns(4,5)P2 each impair cytokinesis. We conclude that PtdIns(4,5)P2 is present at the cleavage furrow and is required for normal cytokinesis at least in part because of a role in adhesion between the contractile ring and the plasma membrane.


Asunto(s)
Citocinesis/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosfatidilinositol 4,5-Difosfato , Fosfolipasa C gamma/metabolismo , Proteínas/metabolismo
17.
Adv Biol Regul ; 67: 84-92, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28942352

RESUMEN

MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, ßPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Miosinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Transporte Biológico Activo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/genética , Aparato de Golgi/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Miosinas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
18.
J Med Chem ; 61(23): 10463-10472, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30380865

RESUMEN

Using a novel chemistry-based assay for identifying electrophilic natural products in unprocessed extracts, we identified the PI3-kinase/mTOR dual inhibitor neolymphostin A from Salinispora arenicola CNY-486. The method further showed that the vinylogous ester substituent on the neolymphostin core was the exact site for enzyme conjugation. Tandem MS/MS experiments on PI3Kα treated with the inhibitor revealed that neolymphostin covalently modified Lys802 with a shift in mass of +306 amu, corresponding to addition of the inhibitor and elimination of methanol. The binding pose of the inhibitor bound to PI3Kα was modeled, and hydrogen-deuterium exchange mass spectrometry experiments supported this model. Against a panel of kinases, neolymphostin showed good selectivity for PI3-kinase and mTOR. In addition, the natural product blocked AKT phosphorylation in live cells with an IC50 of ∼3 nM. Taken together, neolymphostin is the first reported example of a covalent kinase inhibitor from the bacterial domain of life.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ésteres/química , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinolinas/química , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Conformación Proteica , Quinolinas/metabolismo
19.
J Clin Invest ; 113(10): 1398-407, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15146237

RESUMEN

E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN/deficiencia , Diabetes Mellitus Tipo 1/etiología , Insuficiencia Pancreática Exocrina/etiología , Transactivadores/deficiencia , Factores de Transcripción/deficiencia , Animales , Apoptosis , Diferenciación Celular , División Celular , Replicación del ADN , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Factor de Transcripción E2F2 , Insuficiencia Pancreática Exocrina/genética , Insuficiencia Pancreática Exocrina/patología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica , Páncreas/patología , Transactivadores/genética , Factores de Transcripción/genética
20.
Curr Opin Cell Biol ; 45: 17-23, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213314

RESUMEN

The Golgi is generally recognized for its central role in the secretory pathway to orchestrate protein post-translational modification and trafficking of proteins and lipids to their final destination. Despite the common view of the Golgi as an inert sorting organelle, emerging data demonstrate that important signaling events occur at the Golgi, including those that regulate the trafficking function of the Golgi. The phosphatidylinositol-4-phosphate/GOLPH3/MYO18A/F-actin complex serves as a hub for signals that regulate Golgi trafficking function. Furthermore, the Golgi is increasingly appreciated for its important role in cell growth and in driving oncogenic transformation, as illuminated by the discovery that GOLPH3 and MYO18A are cancer drivers.


Asunto(s)
Aparato de Golgi/metabolismo , Metabolismo de los Lípidos , Transporte de Proteínas , Transducción de Señal , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA