Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 105(46): 17801-6, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-18997010

RESUMEN

Ribonucleotide reductase provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and repair. The mammalian enzyme consists of a catalytic (R1) and a radical-generating (R2 or p53R2) subunit. During S-phase, a R1/R2 complex is the major provider of deoxynucleotides. p53R2 is induced by p53 after DNA damage and was proposed to supply deoxynucleotides for DNA repair after translocating from the cytosol to the cell nucleus. Similarly R1 and R2 were claimed to move to the nucleus during S-phase to provide deoxynucleotides for DNA replication. These models suggest translocation of ribonucleotide reductase subunits as a regulatory mechanism. In quiescent cells that are devoid of R2, R1/p53R2 synthesizes deoxynucleotides also in the absence of DNA damage. Mutations in human p53R2 cause severe mitochondrial DNA depletion demonstrating a vital function for p53R2 different from DNA repair and cast doubt on a nuclear localization of the protein. Here we use three independent methods to localize R1, R2, and p53R2 in fibroblasts during cell proliferation and after DNA damage: Western blotting after separation of cytosol and nuclei; immunofluorescence in intact cells; and transfection with proteins carrying fluorescent tags. We thoroughly validate each method, especially the specificity of antibodies. We find in all cases that ribonucleotide reductase resides in the cytosol suggesting that the deoxynucleotides produced by the enzyme diffuse into the nucleus or are transported into mitochondria and supporting a primary function of p53R2 for mitochondrial DNA replication.


Asunto(s)
Citosol/metabolismo , Daño del ADN , Ribonucleótidos/metabolismo , Células 3T3 , Animales , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Western Blotting , Células COS , Fraccionamiento Celular , Núcleo Celular/enzimología , Chlorocebus aethiops , Citosol/enzimología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Microscopía Confocal , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleótido Reductasas/metabolismo , Fracciones Subcelulares/enzimología , Transfección
2.
J Biol Chem ; 283(9): 5380-8, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18167353

RESUMEN

African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.


Asunto(s)
Adenina/química , Adenosina Quinasa/química , Antimetabolitos/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Vidarabina/química , Adenina/metabolismo , Adenosina Quinasa/antagonistas & inhibidores , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Antimetabolitos/uso terapéutico , Catálisis , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Leishmania donovani/enzimología , Leishmania donovani/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato/fisiología , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/enzimología , Tripanosomiasis Africana/genética , Vidarabina/uso terapéutico
3.
J Biol Chem ; 282(16): 11858-65, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17331943

RESUMEN

African sleeping sickness is a fatal disease caused by two parasite subspecies: Trypanosoma brucei gambiense and T. b. rhodesiense. We previously reported that trypanosomes have extraordinary low CTP pools compared with mammalian cells. Trypanosomes also lack salvage of cytidine/cytosine making the parasite CTP synthetase a potential target for treatment of the disease. In this study, we have expressed and purified recombinant T. brucei CTP synthetase. The enzyme has a higher K(m) value for UTP than the mammalian CTP synthetase, which in combination with a lower UTP pool may account for the low CTP pool in trypanosomes. The activity of the trypanosome CTP synthetase is irreversibly inhibited by the glutamine analogue acivicin, a drug extensively tested as an antitumor agent. There is a rapid uptake of acivicin in mice both given intraperitoneally and orally by gavage. Daily injection of acivicin in trypanosome-infected mice suppressed the infection up to one month without any significant loss of weight. Experiments with cultured bloodstream T. brucei showed that acivicin is trypanocidal if present at 1 mum concentration for at least 4 days. Therefore, acivicin may qualify as a drug with "desirable" properties, i.e. cure within 7 days, according to the current Target Product Profiles of WHO and DNDi.


Asunto(s)
Ligasas de Carbono-Nitrógeno/biosíntesis , Ligasas de Carbono-Nitrógeno/química , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei gambiense/enzimología , Tripanosomiasis Africana/terapia , Animales , Citidina/química , Citosina/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Tripanocidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA