Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res ; 66(21): 10505-12, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079472

RESUMEN

Ras mutations are frequent in thyroid tumors, the most common endocrine malignancy. The ability of Ras to transform thyroid cells is thought to rely on its mitogenic activity. Unexpectedly, acute expression of activated Ras in normal rat thyroid cells induced a DNA damage response, followed by apoptosis. Notably, a subpopulation of cells evaded apoptosis and emerged with features of transformation, including the loss of epithelial morphology, dedifferentiation, and the acquisition of hormone- and anchorage-independent proliferation. Strikingly, the surviving cells showed marked chromosomal instability. Acutely, Ras stimulated replication stress as evidenced by the induction of ataxia telangiectasia mutated and Rad3-related protein kinase (ATR) activity (Chk1 phosphorylation) and of gammaH2A.X, a marker of DNA damage. Despite the activation of a checkpoint, cells continued through mitosis in the face of DNA damage, resulting in an increase in cells harboring micronuclei, an indication of defects in chromosome segregation and other forms of chromosome damage. Cells that survived exposure to Ras continued to exhibit replication stress (ATR activation) but no longer exhibited gammaH2A.X or full activation of p53. When rechallenged with Ras or DNA-damaging agents, the surviving cells were more resistant to apoptosis than parental cells. These data show that acute expression of activated Ras is sufficient to induce chromosomal instability in the absence of other signals, and suggest that Ras-induced chromosomal instability arises as a consequence of defects in the processing of DNA damage. Hence, abrogation of the DNA damage response may constitute a novel mechanism for Ras transformation.


Asunto(s)
Transformación Celular Neoplásica , Inestabilidad Cromosómica , Daño del ADN , Genes ras/fisiología , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Neoplasias de la Tiroides/genética
2.
Mol Endocrinol ; 18(9): 2321-32, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15166254

RESUMEN

Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Suero/fisiología , Glándula Tiroides/metabolismo , Tirotropina/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Quinasas CDC2-CDC28/metabolismo , Bovinos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/análisis , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Colforsina/farmacología , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , ADN/análisis , ADN/biosíntesis , Fosforilación , Transporte de Proteínas/fisiología , Ratas , Proteína de Retinoblastoma/metabolismo , Glándula Tiroides/citología , Tirotropina/fisiología , Proteínas Supresoras de Tumor/análisis
3.
J Biol Chem ; 281(46): 34759-67, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16968694

RESUMEN

Genetic evidence indicates that Ras plays a critical role in the initiation and progression of human thyroid tumors. Paradoxically, acute expression of activated Ras in normal rat thyroid cells induced deregulated cell cycle progression and apoptosis. We investigated whether cell cycle progression was required for Ras-stimulated apoptosis. Ras increased CDK-2 activity following its introduction into quiescent cells. Apoptotic cells exhibited a sustained increase in CDK-2 activity, accompanied by the loss of CDK-2-associated p27. Blockade of Ras-induced CDK-2 activity and S phase entry via overexpression of p27 inhibited apoptosis. Inactivation of the retinoblastoma protein in quiescent cells through expression of HPV-E7 stimulated cell cycle progression and apoptosis, indicating that deregulated cell cycle progression is sufficient to induce apoptosis. Ras failed to induce G1 phase growth arrest in normal rat thyroid cells. Rather, Ras-expressing thyroid cells progressed into S and G2 phases and evoked a checkpoint response characterized by the activation of ATR. Ras-stimulated ATR activity, as evidenced by Chk1 and p53 phosphorylation, was blocked by p27, suggesting that cell cycle progression triggers checkpoint activation, likely as a consequence of replication stress. These data reveal that Ras is capable of inducing a DNA damage response with characteristics similar to those reported in precancerous lesions. Our findings also suggest that the frequent mutational activation of Ras in thyroid tumors reflects the ability of Ras-expressing cells to bypass checkpoints and evade apoptosis rather than to simply increase proliferative potential.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Glándula Tiroides/metabolismo , Proteínas ras/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Wistar , Glándula Tiroides/citología , Regulación hacia Arriba , Proteínas ras/genética
4.
J Biol Chem ; 280(37): 32107-14, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16051606

RESUMEN

Overexpression of protein kinase C delta (PKCdelta) stimulates apoptosis in a wide variety of cell types through a mechanism that is incompletely understood. PKCdelta-deficient cells are impaired in their response to DNA damage-induced apoptosis, suggesting that PKCdelta is required to mount an appropriate apoptotic response under conditions of stress. The mechanism through which it does so remains elusive. In addition to effects on cell survival, PKCdelta elicits pleiotropic effects on cellular proliferation. We now provide the first evidence that the ability of PKCdelta to stimulate apoptosis is intimately linked to its ability to stimulate G(1) phase cell cycle progression. Using an adenoviral-based expression system to express PKCalpha,-delta, and -epsilon in epithelial cells, we demonstrate that a modest increase in PKCdelta activity selectively stimulates quiescent cells to initiate G(1) phase cell cycle progression. Rather than completing the cell cycle, PKCdelta-infected cells arrest in S phase, an event that triggers caspase-dependent apoptotic cell death. Apoptosis was preceded by the activation of cell cycle checkpoints, culminating in the phosphorylation of Chk-1 and p53. Strikingly, blockade of S phase entry using the phosphatidylinositol 3-kinase inhibitor LY294002 prevented checkpoint activation and apoptosis. In contrast, inhibitors of mitogen-activated protein kinase cascades failed to prevent apoptosis. These findings demonstrate that the biological effects of PKCdelta can be extended to include positive regulation of G(1) phase cell cycle progression. Importantly, they reveal the existence of a novel, cell cycle-dependent mechanism through which PKCdelta stimulates cell death.


Asunto(s)
Apoptosis , Proteína Quinasa C/fisiología , Adenoviridae/genética , Animales , Western Blotting , Bromodesoxiuridina/farmacología , Ciclo Celular , Muerte Celular , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromonas/farmacología , ADN/metabolismo , Daño del ADN , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Citometría de Flujo , Fase G1 , Modelos Biológicos , Morfolinas/farmacología , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Quinasa C-delta , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Fase S , Glándula Tiroides/citología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA