Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 570(7761): 385-389, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142840

RESUMEN

Cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer1. However, characteristics of the origins and molecular features of cell-free DNA are poorly understood. Here we developed an approach to evaluate fragmentation patterns of cell-free DNA across the genome, and found that profiles of healthy individuals reflected nucleosomal patterns of white blood cells, whereas patients with cancer had altered fragmentation profiles. We used this method to analyse the fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric or bile duct cancer and 245 healthy individuals. A machine learning model that incorporated genome-wide fragmentation features had sensitivities of detection ranging from 57% to more than 99% among the seven cancer types at 98% specificity, with an overall area under the curve value of 0.94. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining our approach with mutation-based cell-free DNA analyses detected 91% of patients with cancer. The results of these analyses highlight important properties of cell-free DNA and provide a proof-of-principle approach for the screening, early detection and monitoring of human cancer.


Asunto(s)
ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Fragmentación del ADN , Genoma Humano/genética , Neoplasias/diagnóstico , Neoplasias/genética , Estudios de Casos y Controles , Estudios de Cohortes , Análisis Mutacional de ADN , Humanos , Aprendizaje Automático , Mutación , Neoplasias/sangre , Neoplasias/patología
2.
Biometrics ; 80(2)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38837900

RESUMEN

Randomization-based inference using the Fisher randomization test allows for the computation of Fisher-exact P-values, making it an attractive option for the analysis of small, randomized experiments with non-normal outcomes. Two common test statistics used to perform Fisher randomization tests are the difference-in-means between the treatment and control groups and the covariate-adjusted version of the difference-in-means using analysis of covariance. Modern computing allows for fast computation of the Fisher-exact P-value, but confidence intervals have typically been obtained by inverting the Fisher randomization test over a range of possible effect sizes. The test inversion procedure is computationally expensive, limiting the usage of randomization-based inference in applied work. A recent paper by Zhu and Liu developed a closed form expression for the randomization-based confidence interval using the difference-in-means statistic. We develop an important extension of Zhu and Liu to obtain a closed form expression for the randomization-based covariate-adjusted confidence interval and give practitioners a sufficiency condition that can be checked using observed data and that guarantees that these confidence intervals have correct coverage. Simulations show that our procedure generates randomization-based covariate-adjusted confidence intervals that are robust to non-normality and that can be calculated in nearly the same time as it takes to calculate the Fisher-exact P-value, thus removing the computational barrier to performing randomization-based inference when adjusting for covariates. We also demonstrate our method on a re-analysis of phase I clinical trial data.


Asunto(s)
Simulación por Computador , Intervalos de Confianza , Humanos , Biometría/métodos , Modelos Estadísticos , Interpretación Estadística de Datos , Distribución Aleatoria , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos
3.
Biostatistics ; 22(4): 836-857, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32040180

RESUMEN

Computer-coded verbal autopsy (CCVA) algorithms predict cause of death from high-dimensional family questionnaire data (verbal autopsy) of a deceased individual, which are then aggregated to generate national and regional estimates of cause-specific mortality fractions. These estimates may be inaccurate if CCVA is trained on non-local training data different from the local population of interest. This problem is a special case of transfer learning, i.e., improving classification within a target domain (e.g., a particular population) with the classifier trained in a source-domain. Most transfer learning approaches concern individual-level (e.g., a person's) classification. Social and health scientists such as epidemiologists are often more interested with understanding etiological distributions at the population-level. The sample sizes of their data sets are typically orders of magnitude smaller than those used for common transfer learning applications like image classification, document identification, etc. We present a parsimonious hierarchical Bayesian transfer learning framework to directly estimate population-level class probabilities in a target domain, using any baseline classifier trained on source-domain, and a small labeled target-domain dataset. To address small sample sizes, we introduce a novel shrinkage prior for the transfer error rates guaranteeing that, in absence of any labeled target-domain data or when the baseline classifier is perfectly accurate, our transfer learning agrees with direct aggregation of predictions from the baseline classifier, thereby subsuming the default practice as a special case. We then extend our approach to use an ensemble of baseline classifiers producing an unified estimate. Theoretical and empirical results demonstrate how the ensemble model favors the most accurate baseline classifier. We present data analyses demonstrating the utility of our approach.


Asunto(s)
Algoritmos , Aprendizaje Automático , Teorema de Bayes , Causalidad , Humanos
4.
Biometrics ; 78(3): 974-987, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33788259

RESUMEN

Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log-ratio transformations. We develop a transformation-free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data-generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.


Asunto(s)
Modelos Lineales
5.
Ann Intern Med ; 174(1): 33-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32960645

RESUMEN

BACKGROUND: Risk factors for progression of coronavirus disease 2019 (COVID-19) to severe disease or death are underexplored in U.S. cohorts. OBJECTIVE: To determine the factors on hospital admission that are predictive of severe disease or death from COVID-19. DESIGN: Retrospective cohort analysis. SETTING: Five hospitals in the Maryland and Washington, DC, area. PATIENTS: 832 consecutive COVID-19 admissions from 4 March to 24 April 2020, with follow-up through 27 June 2020. MEASUREMENTS: Patient trajectories and outcomes, categorized by using the World Health Organization COVID-19 disease severity scale. Primary outcomes were death and a composite of severe disease or death. RESULTS: Median patient age was 64 years (range, 1 to 108 years); 47% were women, 40% were Black, 16% were Latinx, and 21% were nursing home residents. Among all patients, 131 (16%) died and 694 (83%) were discharged (523 [63%] had mild to moderate disease and 171 [20%] had severe disease). Of deaths, 66 (50%) were nursing home residents. Of 787 patients admitted with mild to moderate disease, 302 (38%) progressed to severe disease or death: 181 (60%) by day 2 and 238 (79%) by day 4. Patients had markedly different probabilities of disease progression on the basis of age, nursing home residence, comorbid conditions, obesity, respiratory symptoms, respiratory rate, fever, absolute lymphocyte count, hypoalbuminemia, troponin level, and C-reactive protein level and the interactions among these factors. Using only factors present on admission, a model to predict in-hospital disease progression had an area under the curve of 0.85, 0.79, and 0.79 at days 2, 4, and 7, respectively. LIMITATION: The study was done in a single health care system. CONCLUSION: A combination of demographic and clinical variables is strongly associated with severe COVID-19 disease or death and their early onset. The COVID-19 Inpatient Risk Calculator (CIRC), using factors present on admission, can inform clinical and resource allocation decisions. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Asunto(s)
COVID-19/mortalidad , Mortalidad Hospitalaria , Hospitalización , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pandemias , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Estados Unidos/epidemiología
6.
Am J Trop Med Hyg ; 108(5_Suppl): 78-89, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37037430

RESUMEN

The Countrywide Mortality Surveillance for Action platform is collecting verbal autopsy (VA) records from a nationally representative sample in Mozambique. These records are used to estimate the national and subnational cause-specific mortality fractions (CSMFs) for children (1-59 months) and neonates (1-28 days). Cross-tabulation of VA-based cause-of-death (COD) determination against that from the minimally invasive tissue sampling (MITS) from the Child Health and Mortality Prevention project revealed important misclassification errors for all the VA algorithms, which if not accounted for will lead to bias in the estimates of CSMF from VA. A recently proposed Bayesian VA-calibration method is used that accounts for this misclassification bias and produces calibrated estimates of CSMF. Both the VA-COD and the MITS-COD can be multi-cause (i.e., suggest more than one probable COD for some of the records). To fully use this probabilistic COD data, we use the multi-cause VA calibration. Two different computer-coded VA algorithms are considered-InSilicoVA and EAVA-and the final CSMF estimates are obtained using an ensemble calibration that uses data from both the algorithms. The calibrated estimates consistently offer a better fit to the data and reveal important changes in the CSMF for both children and neonates in Mozambique after accounting for VA misclassification bias.


Asunto(s)
Muerte , Recién Nacido , Humanos , Niño , Autopsia , Causas de Muerte , Mozambique/epidemiología , Teorema de Bayes , Calibración
7.
Am J Trop Med Hyg ; 108(5_Suppl): 66-77, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37037438

RESUMEN

Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA) algorithms used for this task are imperfect and misclassify COD for a large proportion of deaths. If not accounted for, this misclassification leads to biased estimates of cause-specific mortality fractions (CSMFs), a critical piece in health-policy making. Recent work has demonstrated that the knowledge of the CCVA misclassification rates can be used to calibrate raw VA-based CSMF estimates to account for the misclassification bias. In this manuscript, we review the current practices and issues with raw COD predictions from CCVA algorithms and provide a complete primer on how to use the VA calibration approach with the calibratedVA software to correct for verbal autopsy misclassification bias in cause-specific mortality estimates. We use calibratedVA to obtain CSMFs for child (1-59 months) and neonatal deaths using VA data from the Countrywide Mortality Surveillance for Action project in Mozambique.


Asunto(s)
Algoritmos , Programas Informáticos , Niño , Recién Nacido , Humanos , Autopsia , Causas de Muerte , Mozambique , Mortalidad
8.
EClinicalMedicine ; 62: 102149, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37599905

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity in people with and without diabetes, but it is underdiagnosed, posing challenges for research and clinical management. Here, we determine if natural language processing (NLP) of data in the electronic health record (EHR) could identify undiagnosed patients with hepatic steatosis based on pathology and radiology reports. Methods: A rule-based NLP algorithm was built using a Linguamatics literature text mining tool to search 2.15 million pathology report and 2.7 million imaging reports in the Penn Medicine EHR from November 2014, through December 2020, for evidence of hepatic steatosis. For quality control, two independent physicians manually reviewed randomly chosen biopsy and imaging reports (n = 353, PPV 99.7%). Findings: After exclusion of individuals with other causes of hepatic steatosis, 3007 patients with biopsy-proven NAFLD and 42,083 patients with imaging-proven NAFLD were identified. Interestingly, elevated ALT was not a sensitive predictor of the presence of steatosis, and only half of the biopsied patients with steatosis ever received an ICD diagnosis code for the presence of NAFLD/NASH. There was a robust association for PNPLA3 and TM6SF2 risk alleles and steatosis identified by NLP. We identified 234 disorders that were significantly over- or underrepresented in all subjects with steatosis and identified changes in serum markers (e.g., GGT) associated with presence of steatosis. Interpretation: This study demonstrates clear feasibility of NLP-based approaches to identify patients whose steatosis was indicated in imaging and pathology reports within a large healthcare system and uncovers undercoding of NAFLD in the general population. Identification of patients at risk could link them to improved care and outcomes. Funding: The study was funded by US and German funding sources that did provide financial support only and had no influence or control over the research process.

9.
Sci Rep ; 12(1): 7001, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488026

RESUMEN

Swedish Interactive Threshold Algorithm (SITA) Faster is the most recent and fastest testing algorithm for the evaluation of Humphrey visual fields (VF). However, existing evidence suggests that there are some differences in global measures of VF loss in eyes transitioning from SITA Standard to the newer SITA Faster. These differences may be relevant, especially in glaucoma, where VF changes over time influence clinical decisions around treatment. Furthermore, characterization of differences in localizable VF loss patterns between algorithms, rather than global summary measures, can be important for clinician interpretation when transitioning testing strategies. In this study, we determined the effect of transitioning from SITA Standard to SITA Faster on VF loss patterns in glaucomatous eyes undergoing longitudinal VF testing in a real-world clinical setting. Archetypal analysis was used to derive composition weights of 16 clinically relevant VF patterns (i.e., archetypes (AT)) from patient VFs. We found switching from SITA Standard to SITA Faster was associated with less preservation of VF loss (i.e., abnormal AT 2-4, 6-9, 11, 13, 14) relative to successive SITA Standard exams (P value < 0.01) and was associated with relatively greater preservation of AT 1, the normal VF (P value < 0.01). Eyes that transition from SITA Standard to SITA Faster in a real-world clinical setting have an increased likelihood of preserving patterns reflecting a normal VF and lower tendency to preserve patterns reflecting abnormal VF as compared to consecutive SITA Standard exams in the same eye.


Asunto(s)
Glaucoma , Campos Visuales , Algoritmos , Glaucoma/diagnóstico , Humanos , Suecia , Trastornos de la Visión/diagnóstico , Pruebas del Campo Visual
10.
J Eval Clin Pract ; 28(4): 581-598, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090073

RESUMEN

RATIONALE, AIMS AND OBJECTIVES: In the management of symptomatic bone metastases, current practice guidelines do not provide clear methodology for selecting palliative radiotherapy (RT) regimens based on specific patient and disease features. Decision support aids may offer an effective means for translating the complex data needed to render individualised treatment decisions, yet no such tools are available for use in this setting. Thus, we describe the development of the Bone Metastases Ensemble Trees for Survival-Decision Support Platform (BMETS-DSP), which aims to optimise selection of evidence-based, individualised palliative RT regimens. METHOD: The Ottawa Decision Support Framework was used as the theoretical basis for development of BMETS-DSP. First, we utilised stakeholder input and review of the literature to assess determinants underlying the provider decision. Based on this assessment and iterative stakeholder feedback, we developed the web-based, provider-facing BMETS-DSP. Consistent with the underlying theoretical framework, our design also included assessment of decision quality using the International Patient Decision Aids Standards (IPDAS) certification checklist. RESULTS: Stakeholder input and review of 54 evidence-based publications identified the following determinants of the provider decision: estimated prognosis, characteristics of the target symptomatic lesion and the primary cancer type, consideration of alternative interventions, access to patient-specific recommendations, and patient preferences. Based on these determinants, we developed the BMETS-DSP that (1) collects patient-specific data, (2) displays an individualised predicted survival curve, and (3) provides case-specific, evidence-based recommendations regarding RT, open surgery, systemic therapy, and hospice referral to aid in the decision-making process. The finalised tool met IPDAS quality requirements. Preliminary results of a pilot assessment suggest impact of clinical outcomes. CONCLUSIONS: We describe the successful development of a provider-facing decision support platform to aid in the provision of palliative RT in better alignment with patient and disease features. Impact of the BMETS-DSP on decision outcomes will be further assessed in a randomised, controlled study.


Asunto(s)
Técnicas de Apoyo para la Decisión , Proyectos de Investigación , Humanos , Pronóstico
11.
Cancer Res ; 82(21): 4058-4078, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36074020

RESUMEN

The RAS family of small GTPases represents the most commonly activated oncogenes in human cancers. To better understand the prevalence of somatic RAS mutations and the compendium of genes that are coaltered in RAS-mutant tumors, we analyzed targeted next-generation sequencing data of 607,863 mutations from 66,372 tumors in 51 cancer types in the AACR Project GENIE Registry. Bayesian hierarchical models were implemented to estimate the cancer-specific prevalence of RAS and non-RAS somatic mutations, to evaluate co-occurrence and mutual exclusivity, and to model the effects of tumor mutation burden and mutational signatures on comutation patterns. These analyses revealed differential RAS prevalence and comutations with non-RAS genes in a cancer lineage-dependent and context-dependent manner, with differences across age, sex, and ethnic groups. Allele-specific RAS co-mutational patterns included an enrichment in NTRK3 and chromatin-regulating gene mutations in KRAS G12C-mutant non-small cell lung cancer. Integrated multiomic analyses of 10,217 tumors from The Cancer Genome Atlas (TCGA) revealed distinct genotype-driven gene expression programs pointing to differential recruitment of cancer hallmarks as well as phenotypic differences and immune surveillance states in the tumor microenvironment of RAS-mutant tumors. The distinct genomic tracks discovered in RAS-mutant tumors reflected differential clinical outcomes in TCGA cohort and in an independent cohort of patients with KRAS G12C-mutant non-small cell lung cancer that received immunotherapy-containing regimens. The RAS genetic architecture points to cancer lineage-specific therapeutic vulnerabilities that can be leveraged for rationally combining RAS-mutant allele-directed therapies with targeted therapies and immunotherapy. SIGNIFICANCE: The complex genomic landscape of RAS-mutant tumors is reflective of selection processes in a cancer lineage-specific and context-dependent manner, highlighting differential therapeutic vulnerabilities that can be clinically translated.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Teorema de Bayes , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Genómica , Microambiente Tumoral
12.
JCO Clin Cancer Inform ; 6: e2200082, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306499

RESUMEN

PURPOSE: The Bone Metastases Ensemble Trees for Survival Decision Support Platform (BMETS-DSP) provides patient-specific survival predictions and evidence-based recommendations to guide multidisciplinary management for symptomatic bone metastases. We assessed the clinical utility of the BMETS-DSP through a pilot prepost design in a simulated clinical environment. METHODS: Ten Radiation Oncology physicians reviewed 55 patient cases at two time points: without and then with the use of BMETS-DSP. Assessment included 12-month survival estimate, confidence in and likelihood of sharing estimates with patients, and recommendations for open surgery, systemic therapy, hospice referral, and radiotherapy (RT) regimen. Paired statistics compared pre- versus post-DSP outcomes. Reported statistical significance is P < .05. RESULTS: Pre- versus post-DSP, overestimation of true minus estimated survival time was significantly reduced (mean difference -2.1 [standard deviation 4.1] v -1 month [standard deviation 3.5]). Prediction accuracy was significantly improved at cut points of < 3 (72 v 79%), ≤ 6 (64 v 71%), and ≥ 12 months (70 v 81%). Median ratings of confidence in and likelihood of sharing prognosis significantly increased. Significantly greater concordance was seen in matching use of 1-fraction RT with the true survival < 3 months (70 v 76%) and < 10-fraction RT with the true survival < 12 months (55 v 62%) and appropriate use of open surgery (47% v 53%), without significant changes in selection of hospice referral or systemic therapy. CONCLUSION: This pilot study demonstrates that BMETS-DSP significantly improved physician survival estimation accuracy, prognostic confidence, likelihood of sharing prognosis, and use of prognosis-appropriate RT regimens in the care of symptomatic bone metastases, supporting future multi-institutional validation of the platform.


Asunto(s)
Neoplasias Óseas , Oncología por Radiación , Humanos , Proyectos Piloto , Neoplasias Óseas/terapia , Neoplasias Óseas/radioterapia , Pronóstico
13.
JCO Clin Cancer Inform ; 5: 304-314, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760638

RESUMEN

PURPOSE: The Bone Metastases Ensemble Trees for Survival (BMETS) model uses a machine learning algorithm to estimate survival time following consultation for palliative radiation therapy for symptomatic bone metastases (SBM). BMETS was developed at a tertiary-care, academic medical center, but its validity and stability when applied to external data sets are unknown. PATIENTS AND METHODS: Patients treated with palliative radiation therapy for SBM from May 2013 to May 2016 at two hospital-based community radiation oncology clinics were included, and medical records were retrospectively reviewed to collect model covariates and survival time. The Kaplan-Meier method was used to estimate overall survival from consultation to death or last follow-up. Model discrimination was estimated using time-dependent area under the curve (tAUC), which was calculated using survival predictions from BMETS based on the initial training data set. RESULTS: A total of 216 sites of SBM were treated in 182 patients. Most common histologies were breast (27%), lung (23%), and prostate (23%). Compared with the BMETS training set, the external validation population was older (mean age, 67 v 62 years; P < .001), had more primary breast (27% v 19%; P = .03) and prostate cancer (20% v 12%; P = .01), and survived longer (median, 10.7 v 6.4 months). When the BMETS model was applied to the external data set, tAUC values at 3, 6, and 12 months were 0.82, 0.77, and 0.77, respectively. When refit with data from the combined training and external validation sets, tAUC remained > 0.79. CONCLUSION: BMETS maintained high discriminative ability when applied to an external validation set and when refit with new data, supporting its generalizability, stability, and the feasibility of dynamic modeling.


Asunto(s)
Neoplasias Óseas , Aprendizaje Automático , Anciano , Neoplasias Óseas/mortalidad , Humanos , Cuidados Paliativos , Estudios Retrospectivos
14.
Int J Radiat Oncol Biol Phys ; 108(3): 554-563, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32446952

RESUMEN

PURPOSE: To determine whether a machine learning approach optimizes survival estimation for patients with symptomatic bone metastases (SBM), we developed the Bone Metastases Ensemble Trees for Survival (BMETS) to predict survival using 27 prognostic covariates. To establish its relative clinical utility, we compared BMETS with 2 simpler Cox regression models used in this setting. METHODS AND MATERIALS: For 492 bone sites in 397 patients evaluated for palliative radiation therapy (RT) for SBM from January 2007 to January 2013, data for 27 clinical variables were collected. These covariates and the primary outcome of time from consultation to death were used to build BMETS using random survival forests. We then performed Cox regressions as per 2 validated models: Chow's 3-item (C-3) and Westhoff's 2-item (W-2) tools. Model performance was assessed using cross-validation procedures and measured by time-dependent area under the curve (tAUC) for all 3 models. For temporal validation, a separate data set comprised of 104 bone sites treated in 85 patients in 2018 was used to estimate tAUC from BMETS. RESULTS: Median survival was 6.4 months. Variable importance was greatest for performance status, blood cell counts, recent systemic therapy type, and receipt of concurrent nonbone palliative RT. tAUC at 3, 6, and 12 months was 0.83, 0.81, and 0.81, respectively, suggesting excellent discrimination of BMETS across postconsultation time points. BMETS outperformed simpler models at each time, with respective tAUC at each time of 0.78, 0.76, and 0.74 for the C-3 model and 0.80, 0.78, and 0.77 for the W-2 model. For the temporal validation set, respective tAUC was similarly high at 0.86, 0.82, and 0.78. CONCLUSIONS: For patients with SBM, BMETS improved survival predictions versus simpler traditional models. Model performance was maintained when applied to a temporal validation set. To facilitate clinical use, we developed a web platform for data entry and display of BMETS-predicted survival probabilities.


Asunto(s)
Algoritmos , Neoplasias Óseas/mortalidad , Neoplasias Óseas/secundario , Esperanza de Vida , Aprendizaje Automático , Analgésicos Opioides/uso terapéutico , Área Bajo la Curva , Recuento de Células Sanguíneas , Neoplasias Óseas/sangre , Neoplasias Óseas/radioterapia , Femenino , Humanos , Estimación de Kaplan-Meier , Estado de Ejecución de Karnofsky , Masculino , Persona de Mediana Edad , Cuidados Paliativos/métodos , Huesos Pélvicos , Pronóstico , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Neoplasias de la Columna Vertebral/sangre , Neoplasias de la Columna Vertebral/mortalidad , Neoplasias de la Columna Vertebral/radioterapia , Neoplasias de la Columna Vertebral/secundario , Esteroides/uso terapéutico , Factores de Tiempo
15.
Int J Radiat Oncol Biol Phys ; 106(4): 800-810, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805367

RESUMEN

PURPOSE: Numerous randomized trials have demonstrated noninferiority of single- versus multiple-fraction palliative radiation therapy (RT) in the management of uncomplicated bone metastases; yet there is neither a clear definition of what constitutes a complicated lesion, nor substantial data regarding the prevalence of such complicating features in clinical practice. Thus, we identify a range of evidence-based operational definitions of complicated symptomatic bone metastases and characterize the frequency of such complicating features at a high-volume, tertiary care center. METHODS AND MATERIALS: A retrospective review of patients seen in consultation for symptomatic bone metastases between March 1, 2007, and July 31, 2013, at Johns Hopkins Hospital identified patient and disease characteristics. Descriptive statistics characterized the frequency of the following complicating features: prior RT, prior surgery, neuraxis compromise, pathologic fracture, and soft tissue component at the symptomatic site. A range of definitions for complicated bone metastases was evaluated based on combinations of these features. Uni- and multivariable logistic regressions evaluated the odds of complicated bone metastases as a function of site of primary cancer and of the symptomatic target lesion. RESULTS: A total of 686 symptomatic bone metastases in 401 patients were evaluated. Percent of target sites complicated by prior RT was 4.4%, prior surgery was 8.9%, pathologic fracture was 20.6%, neuraxis compromise was 52.0% among spine and medial pelvis sites, and soft tissue component was 38.6%. More than 96 possible definitions of complicated bone metastases were identified. The presence of such complicated lesions ranged from 2.3% to 67.3%, depending on the operational definition used. Odds of a complicated lesion were significantly higher for spine sites and select nonbreast histologies. CONCLUSIONS: In this retrospective study, we found complicated symptomatic bone metastases may be present in up to two-thirds of patients. Literature review also demonstrates no clear standard definition of complicated bone metastases, potentially explaining underutilization of single-fraction palliative RT in this setting.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/radioterapia , Femenino , Humanos , Masculino , Análisis Multivariante , Cuidados Paliativos , Análisis de Regresión , Estudios Retrospectivos , Resultado del Tratamiento
16.
Nat Commun ; 11(1): 525, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988276

RESUMEN

Liquid biopsies are providing new opportunities for detection of residual disease in cell-free DNA (cfDNA) after surgery but may be confounded through identification of alterations arising from clonal hematopoiesis. Here, we identify circulating tumor-derived DNA (ctDNA) alterations through ultrasensitive targeted sequencing analyses of matched cfDNA and white blood cells from the same patient. We apply this approach to analyze samples from patients in the CRITICS trial, a phase III randomized controlled study of perioperative treatment in patients with operable gastric cancer. After filtering alterations from matched white blood cells, the presence of ctDNA predicts recurrence when analyzed within nine weeks after preoperative treatment and after surgery in patients eligible for multimodal treatment. These analyses provide a facile method for distinguishing ctDNA from other cfDNA alterations and highlight the utility of ctDNA as a predictive biomarker of patient outcome to perioperative cancer therapy and surgical resection in patients with gastric cancer.


Asunto(s)
Ácidos Nucleicos Libres de Células/química , ADN de Neoplasias/análisis , Leucocitos/química , Recurrencia Local de Neoplasia/diagnóstico , Análisis de Secuencia de ADN , Neoplasias Gástricas/diagnóstico , ADN de Neoplasias/química , Hematopoyesis , Humanos , Pronóstico , Prueba de Estudio Conceptual , Ensayos Clínicos Controlados Aleatorios como Asunto , Neoplasias Gástricas/genética , Análisis de Supervivencia
17.
Cancer Res ; 79(6): 1204-1213, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30573519

RESUMEN

With the advent of precision oncology, there is an urgent need to develop improved methods for rapidly detecting responses to targeted therapies. Here, we have developed an ultrasensitive measure of cell-free tumor load using targeted and whole-genome sequencing approaches to assess responses to tyrosine kinase inhibitors in patients with advanced lung cancer. Analyses of 28 patients treated with anti-EGFR or HER2 therapies revealed a bimodal distribution of cell-free circulating tumor DNA (ctDNA) after therapy initiation, with molecular responders having nearly complete elimination of ctDNA (>98%). Molecular nonresponders displayed limited changes in ctDNA levels posttreatment and experienced significantly shorter progression-free survival (median 1.6 vs. 13.7 months, P < 0.0001; HR = 66.6; 95% confidence interval, 13.0-341.7), which was detected on average 4 weeks earlier than CT imaging. ctDNA analyses of patients with radiographic stable or nonmeasurable disease improved prediction of clinical outcome compared with CT imaging. These analyses provide a rapid approach for evaluating therapeutic response to targeted therapies and have important implications for the management of patients with cancer and the development of new therapeutics.Significance: Cell-free tumor load provides a novel approach for evaluating longitudinal changes in ctDNA during systemic treatment with tyrosine kinase inhibitors and serves an unmet clinical need for real-time, noninvasive detection of tumor response to targeted therapies before radiographic assessment.See related commentary by Zou and Meyerson, p. 1038.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/análisis , ADN de Neoplasias/análisis , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , ADN Tumoral Circulante/genética , ADN de Neoplasias/genética , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Carga Tumoral
18.
Sci Transl Med ; 9(403)2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814544

RESUMEN

Early detection and intervention are likely to be the most effective means for reducing morbidity and mortality of human cancer. However, development of methods for noninvasive detection of early-stage tumors has remained a challenge. We have developed an approach called targeted error correction sequencing (TEC-Seq) that allows ultrasensitive direct evaluation of sequence changes in circulating cell-free DNA using massively parallel sequencing. We have used this approach to examine 58 cancer-related genes encompassing 81 kb. Analysis of plasma from 44 healthy individuals identified genomic changes related to clonal hematopoiesis in 16% of asymptomatic individuals but no alterations in driver genes related to solid cancers. Evaluation of 200 patients with colorectal, breast, lung, or ovarian cancer detected somatic mutations in the plasma of 71, 59, 59, and 68%, respectively, of patients with stage I or II disease. Analyses of mutations in the circulation revealed high concordance with alterations in the tumors of these patients. In patients with resectable colorectal cancers, higher amounts of preoperative circulating tumor DNA were associated with disease recurrence and decreased overall survival. These analyses provide a broadly applicable approach for noninvasive detection of early-stage tumors that may be useful for screening and management of patients with cancer.


Asunto(s)
ADN Tumoral Circulante/metabolismo , Detección Precoz del Cáncer/métodos , Neoplasias/diagnóstico , Neoplasias/patología , Células Sanguíneas/metabolismo , Estudios de Casos y Controles , Ácidos Nucleicos Libres de Células/sangre , ADN Tumoral Circulante/sangre , Progresión de la Enfermedad , Femenino , Genes Relacionados con las Neoplasias , Humanos , Mutación/genética , Estadificación de Neoplasias , Neoplasias/sangre , Neoplasias/genética , Cuidados Preoperatorios , Análisis de Secuencia de ADN , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA