RESUMEN
In most commercial pine farms in southern Brazil, black capuchin causes damage to wood and financial losses when it removes bark from some pine species to feed upon underlying vascular tissues. Therefore, this study aimed to evaluate the variability of the primary metabolites of phloem saps from 10 different species of pine by NMR spectroscopy, as well as the aroma compounds using SPME-GC-MS. Each technique provided a different set of metabolites that we can correlate to monkey predilection. The PCA showed monosaccharide (detected by NMR) and α-pinene (pine-like and resinous flavor descriptors) as attractive compounds for monkeys. On the other hand, the low content of monosaccharide and the high content of ß-phellandrene (citrus odor descriptor) was observed in less attacked pine species (P. patula). The data fusion on primary metabolites and aroma compounds corroborated the individual analyses, complementing the comprehension of the monkey predilection. Thus, P. elliottii was an avoided tree even with high content of sugars possibly due to its high content of ß-phellandrene (citrus odor). The results are useful for further behavioral studies to determine the role that each highlighted metabolite plays in chemically mediated animal-plant interactions.
Asunto(s)
Citrus , Pinus , Animales , Citrus/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Monosacáridos/metabolismo , Floema/metabolismo , Pinus/química , SapajusRESUMEN
Sapota-do-Solimões (Quararibea cordata Vischer) is Amazon South América fruit found in Brazil, Colombia, Ecuador, and Peru. The orange-yellow fruit is usually eaten out of hand or as juice. Despite being a source of carotenoids and dietary fibers (pectin) that can reach the colon and act as an energy source for intestinal microbiota, the fruit is rarely known outside of South America. The symbiotic juice was prepared by fermenting the fruit juice with Lacticaseibacillus casei B-442 and adding prebiotic fructooligosaccharides (FOS, 7% w/v). This study evaluated the functional juice immediately after L. casei fermentation (SSJ0) and after 30 days of cold storage (SSJ30) regarding its effect on human colonic microbiota composition after in vitro fermentation. Fecal samples were collected from two healthy female volunteers, and the 16s rRNA gene sequencing analyzed the fecal microbiota composition. In vitro, colonic fermentation was performed using a batch bioreactor to simulate gastrointestinal conditions. The L. casei viability did not change significantly after 30 days of the synbiotic juice cold storage (4 °C). After the colonic fermentation, the relative abundance of Firmicutes decreased while Proteobacteria and Actinobacteria increased. Regarding short-chain fatty acid (SCFA) production by fecal colonic microbiota, the butyric acid was higher after sample SSJ0 fecal fermentation. In contrast, propionic, isobutyric, and acetic acids were higher after SSJ30 sample fecal fermentation. This study contributes to understanding the interactions between specific foods and the gut microbiota, which can affect human health and well-being.
RESUMEN
The aim of this study was to produce powders from the phenolic extract of the cashew by-product using maltodextrin and gum arabic as encapsulating agents to preserve these bioactive compounds and their antioxidative activity. Extraction was assisted by an ultrasound bath to increase the release of the bioactive compounds, resulting in the hydroalcoholic extract from cashew bagasse. The powders were physically and morphologically characterized, and their total phenolics, antioxidant activity and bioaccessibility were evaluated. All parameters were analyzed by chemometrics. In addition, UPLC-HRMS analysis was used to evaluate the phenolic profile of the extracts, revealing that the powders were able to protect some of the original compounds of the extract, such as catechin, the myricetin fraction and quercetin. The powders showed high total phenolic retention capacity, especially maltodextrin (2893.34 ± 20.18 mg GAE/100 g (DW)), which was the encapsulant that preserved the highest content of polyphenols and antioxidant activity after bioaccessibility in comparison to the unencapsulated extract. The powders showed low water activity (<0.2), low moisture (<8%), high solubility (>60 %) and low hygroscopicity (<4%). The SEM analysis showed that lyophilized extract samples resembled broken glass, which is characteristic of the lyophilization process, and in addition to a predominantly amorphous structure as demonstrated by the X-ray diffraction. The extraction and encapsulation of phenolic compounds from the cashew by-product through lyophilization and using maltodextrin and gum arabic as encapsulants enabled their preservation and potential use of these compounds by the nutraceutical or food industry, and can be used as food additive in order to enrich the content of compounds and the antioxidant activity of numerous products.
RESUMEN
The Phyllanthus genus is widely distributed in tropical and subtropical areas of the world and present several pharmacological applications. Drought is a restrictive factor for crop development and production, and is becoming a severe problem in many regions of the world. The species Phyllanthus amarus and Phyllanthus niruri were subjected to drought stress for varying periods of time (0, 3, 5, 7, and 10 days), and afterwards, leaves were collected and evaluated for physiological and biochemical responses, such as oxidative stress markers and drought-associated defense mechanisms. Results show that P. amarus has an endogenously higher level of variables of the oxidative/antioxidant metabolism, and P. niruri presents the most significant changes in those variables when compared to control and stressed plants. For both Phyllanthus species, drought stress induces higher levels of organic acids such as malic, succinic, and citric acids, and amino acids such as proline, GABA, alanine, and valine. Moreover, P. niruri plants respond with greater glucose and corilagin contents. Therefore, considering the evaluated metabolic changes, P. amarus is better adapted to drought-stress, while P. niruri presents an acclimation strategy that increases the corilagin levels induced by short-term drought stress.