Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 79: 351-79, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20533884

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that extensively regulate gene expression in animals, plants, and protozoa. miRNAs function posttranscriptionally by usually base-pairing to the mRNA 3'-untranslated regions to repress protein synthesis by mechanisms that are not fully understood. In this review, we describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA-mediated repression. We discuss the multiple, often contradictory, mechanisms that miRNAs have been reported to use, which cause translational repression and mRNA decay. We also address the issue of cellular localization of miRNA-mediated events and a role for RNA-binding proteins in activation or relief of miRNA repression.


Asunto(s)
MicroARNs/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/química , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo
2.
Cell ; 141(4): 618-31, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20478254

RESUMEN

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.


Asunto(s)
MicroARNs/metabolismo , Neuronas/metabolismo , Animales , Adaptación a la Oscuridad , Regulación hacia Abajo , Células Madre Embrionarias , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Neuronas Retinianas/metabolismo , Regulación hacia Arriba
3.
Cell ; 136(5): 818-20, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19269362

RESUMEN

The TRIM-NHL family of proteins is conserved among metazoans and has been shown to regulate cell proliferation and development. In this issue, Hammell et al. (2009) and Schwamborn et al. (2009) identify two members of this protein family, NHL-2 in worms and TRIM32 in mice, as positive regulators of microRNA function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans , Ratones
4.
Cell ; 134(4): 560-2, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724926

RESUMEN

Two recent studies published in Nature (Baek et al. 2008; Selbach et al., 2008) analyze changes in the proteome in response to individual microRNAs (miRNAs). This approach is a powerful means to identify miRNA targets and to quantify the contribution of translational repression to posttranscriptional gene silencing by miRNAs.


Asunto(s)
MicroARNs/genética , Proteínas/metabolismo , Proteómica/métodos , Animales , Biología Computacional , Células HeLa , Humanos
5.
Nucleic Acids Res ; 49(9): 5336-5350, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33905506

RESUMEN

DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.


Asunto(s)
Regiones no Traducidas 5' , ARN Helicasas DEAD-box/fisiología , Biosíntesis de Proteínas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Mutación , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN Interferente Pequeño
6.
Mol Cell ; 54(5): 751-65, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768538

RESUMEN

MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.


Asunto(s)
ARN Helicasas DEAD-box/química , MicroARNs/genética , Proteínas Proto-Oncogénicas/química , Interferencia de ARN , Factores de Transcripción/química , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
RNA ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36617660
8.
J Biol Chem ; 292(20): 8122-8135, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28381442

RESUMEN

An invitation to write a "Reflections" type of article creates a certain ambivalence: it is a great honor, but it also infers the end of your professional career. Before you vanish for good, your colleagues look forward to an interesting but entertaining account of the ups-and-downs of your past research and your views on science in general, peppered with indiscrete anecdotes about your former competitors and collaborators. What follows will disappoint those who await complaint and criticism, for example, about the difficulties of doing research in the 1960s and 1970s in Eastern Europe, or those seeking very personal revelations. My scientific life has in fact seen many happy coincidences, much good fortune, and several lucky escapes from situations that at the time were quite scary. I have also been fortunate with regard to competitors and collaborators, particularly because, whenever possible, I tried to "neutralize" my rivals by collaborating with them - to the benefit of all. I recommend this strategy to young researchers to dispel the nightmares that can occur when competing against powerful contenders. I have been blessed with the selection of my research topic: RNA biology. Over the last five decades, new and unexpected RNA-related phenomena emerged almost yearly. I experienced them very personally while studying transcription, translation, RNA splicing, ribosome biogenesis, and more recently, different classes of regulatory non-coding RNAs, including microRNAs. Some selected research and para-research stories, also covering many wonderful people I had a privilege to work with, are summarized below.


Asunto(s)
ARN , Publicaciones Periódicas como Asunto
9.
EMBO Rep ; 16(4): 500-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25724380

RESUMEN

MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3' terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system.


Asunto(s)
Proteínas Argonautas/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Animales , Proteínas Argonautas/genética , Emparejamiento Base , Secuencia de Bases , Cerebelo/citología , Regulación de la Expresión Génica , Vectores Genéticos , Hipocampo/citología , Lentivirus/genética , Ratones , MicroARNs/genética , Datos de Secuencia Molecular , Neuronas/citología , Cultivo Primario de Células , Estabilidad del ARN , ARN Mensajero/genética , Ratas , Transducción de Señal
10.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19716330

RESUMEN

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Ascitis/genética , Ascitis/metabolismo , Autoantígenos/metabolismo , Sitios de Unión , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Libre de Células , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas , Células HeLa , Humanos , Cinética , Ratones , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Receptores CCR4/metabolismo , Proteínas Represoras , Ribonucleasas , Transfección
11.
Nat Rev Genet ; 11(9): 597-610, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20661255

RESUMEN

MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Estabilidad del ARN , Animales , Regulación de la Expresión Génica , Humanos
12.
Postepy Biochem ; 62(3): 327-334, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28132487

RESUMEN

RNA molecules bearing terminal 2', 3'-cyclic phosphate are quite common in nature. For example, 2', 3'-cyclic phosphate termini are produced during RNA cleavage by many endoribonucleases either as intermediates or final products. Many RNA-based nucleases (ribozymes) also generate cyclic phosphate termini. However, cleavage reactions are not the only way in which RNAs bearing cyclic phosphate ends are produced. They can also be generated by RNA 3'-terminal phosphate cyclases (RtcA), a family of enzymes conserved in eukaryotes, bacteria, and archaea. These enzymes catalyze the ATP-dependent conversion of the 3'-phosphate to a 2', 3'-cyclic phosphodiester at the end of RNA. In this article, I review knowledge about the biochemistry and structure of RNA 3'-phosphate cyclases and also proteins of the RNA cyclase-like (Rcl1) family, and discuss their documented or possible roles in different RNA metabolic reactions.


Asunto(s)
Ligasas/metabolismo , Archaea/enzimología , Bacterias/enzimología , Catálisis , Eucariontes/enzimología , Conformación Proteica , ARN/metabolismo
13.
RNA ; 24(8): ix-x, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30148713
14.
RNA ; 19(9): 1238-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23882114

RESUMEN

Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins ß, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.


Asunto(s)
ARN Helicasas DEAD-box/química , Señales de Localización Nuclear/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleasa III/química , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , Humanos , Señales de Localización Nuclear/química , Transporte de Proteínas , Ribonucleasa III/metabolismo , Transfección
15.
Nature ; 459(7249): 1010-4, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19458619

RESUMEN

Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.


Asunto(s)
MicroARNs/biosíntesis , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/química , Ribonucleasa III/metabolismo
16.
Nucleic Acids Res ; 41(1): 518-32, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23125361

RESUMEN

TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two transcription factors whose down-regulation is important for stem cell function, as TRIM71 targets in mouse embryonic stem cells. Furthermore, one of the defining features of TRIM-NHL proteins, the NHL domain, is necessary and sufficient to target TRIM71 to RNA, while the RING domain that confers ubiquitin ligase activity is dispensable for repression. Our results reveal strong similarities between TRIM71 and Drosophila BRAT, the best-studied TRIM-NHL protein and a well-documented translational repressor, suggesting that BRAT and TRIM71 are part of a family of mRNA repressors regulating proliferation and differentiation.


Asunto(s)
ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , MicroARNs/metabolismo , Mutación Puntual , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Estabilidad del ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , Ribonucleoproteínas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
17.
EMBO Rep ; 13(8): 716-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22677978

RESUMEN

MicroRNAs (miRNAs) regulate most cellular functions, acting by posttranscriptionally repressing numerous eukaryotic mRNAs. They lead to translational repression, deadenylation and degradation of their target mRNAs. Yet, the relative contributions of these effects are controversial and little is known about the sequence of events occurring during the miRNA-induced response. Using stable human cell lines expressing inducible reporters, we found that translational repression is the dominant effect of miRNAs on newly synthesized targets. This step is followed by mRNA deadenylation and decay, which is the dominant effect at steady state. Our findings have important implications for understanding the mechanism of silencing and reconcile seemingly contradictory data.


Asunto(s)
Silenciador del Gen , Mamíferos/metabolismo , MicroARNs/metabolismo , Animales , Genes Reporteros , Proteína HMGA2/metabolismo , Células HeLa , Humanos , Cinética , Modelos Genéticos , Poli A/metabolismo , Biosíntesis de Proteínas/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Nat Rev Genet ; 9(2): 102-14, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18197166

RESUMEN

MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.


Asunto(s)
MicroARNs/fisiología , Interferencia de ARN/fisiología , Animales , Emparejamiento Base/fisiología , Compartimento Celular/fisiología , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/fisiología , MicroARNs/biosíntesis , Modelos Biológicos , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/fisiología , Ribonucleoproteínas/biosíntesis
19.
Nucleic Acids Res ; 40(11): 5088-100, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362743

RESUMEN

The microRNA (miRNA)-mediated repression of protein synthesis in mammalian cells is a reversible process. Target mRNAs with regulatory AU-rich elements (AREs) in their 3'-untranslated regions (3'-UTR) can be relieved of miRNA repression under cellular stress in a process involving the embryonic lethal and altered vision family ARE-binding protein HuR. The HuR-mediated derepression occurred even when AREs were positioned at a considerable distance from the miRNA sites raising questions about the mechanism of HuR action. Here, we show that the relief of miRNA-mediated repression involving HuR can be recapitulated in different in vitro systems in the absence of stress, indicating that HuR alone is sufficient to relieve the miRNA repression upon binding to RNA ARE. Using in vitro assays with purified miRISC and recombinant HuR and its mutants, we show that HuR, likely by its property to oligomerize along RNA, leads to the dissociation of miRISC from target RNA even when miRISC and HuR binding sites are positioned at a distance. Further, we demonstrate that HuR association with AREs can also inhibit miRNA-mediated deadenylation of mRNA in the Krebs-2 ascites extract, in a manner likewise depending on the potential of HuR to oligomerize.


Asunto(s)
Proteínas ELAV/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas ELAV/genética , Células HEK293 , Humanos , MicroARNs/antagonistas & inhibidores , Mutación , División del ARN , Complejo Silenciador Inducido por ARN/antagonistas & inhibidores
20.
Nucleic Acids Res ; 40(1): 399-413, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908396

RESUMEN

Double-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference (RNAi), sequence-independent interferon (IFN) response and editing by adenosine deaminases. To study the routing of dsRNA to these pathways in vivo, we used transgenic mice ubiquitously expressing from a strong promoter, an mRNA with a long hairpin in its 3'-UTR. The expressed dsRNA neither caused any developmental defects nor activated the IFN response, which was inducible only at high expression levels in cultured cells. The dsRNA was poorly processed into siRNAs in somatic cells, whereas, robust RNAi effects were found in oocytes, suggesting that somatic cells lack some factor(s) facilitating siRNA biogenesis. Expressed dsRNA did not cause transcriptional silencing in trans. Analysis of RNA editing revealed that a small fraction of long dsRNA is edited. RNA editing neither prevented the cytoplasmic localization nor processing into siRNAs. Thus, a long dsRNA structure is well tolerated in mammalian cells and is mainly causing a robust RNAi response in oocytes.


Asunto(s)
Adenosina/metabolismo , Oocitos/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Animales , Línea Celular , Células Cultivadas , Desaminación , Femenino , Silenciador del Gen , Genes mos , Humanos , Interferones/metabolismo , Ratones , Ratones Transgénicos , Edición de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA