Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(16): 162501, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723594

RESUMEN

We report an improved measurement of the free neutron lifetime τ_{n} using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38×10^{6} surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ_{n} from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ_{n} measurements and by performing a global likelihood fit to all data while self-consistently incorporating the ß-decay lifetime. Both techniques achieve consistent results and find a value τ_{n}=877.75±0.28_{stat}+0.22/-0.16_{syst} s. With this sensitivity, neutron lifetime experiments now directly address the impact of recent refinements in our understanding of the standard model for neutron decay.

2.
Phys Rev Lett ; 108(9): 092502, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463628

RESUMEN

We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.

3.
Phys Rev Lett ; 105(18): 181803, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231098

RESUMEN

A precise measurement of the neutron decay ß asymmetry A0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A0 = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

4.
Phys Rev Lett ; 105(21): 212502, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21231294

RESUMEN

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the "superfast" quarks probed at x>1. The falloff at x>1 is noticeably stronger in 2H and 3He, but nearly identical for all heavier nuclei.

5.
Phys Rev Lett ; 103(20): 202301, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20365978

RESUMEN

New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2) approximately 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment.

6.
Science ; 290(5499): 2117-9, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118140

RESUMEN

The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

7.
Rev Sci Instrum ; 87(4): 045113, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27131713

RESUMEN

We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 10(18) Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

8.
Phys Rev Lett ; 102(1): 012301, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19257182

RESUMEN

We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.

9.
Phys Rev Lett ; 98(14): 142301, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17501267

RESUMEN

We report on a study of the longitudinal to transverse cross section ratio, R=sigmaL/sigmaT, at low values of x and Q2, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Laboratory Hall C spanning the four-momentum transfer range 0.06

10.
Phys Rev Lett ; 89(27): 272501, 2002 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-12513198

RESUMEN

We present the first measurements of the survival time of ultracold neutrons (UCNs) in solid deuterium (SD2). This critical parameter provides a fundamental limitation to the effectiveness of superthermal UCN sources that utilize solid ortho-deuterium as the source material. These measurements are performed utilizing a SD2 source coupled to a spallation source of neutrons, providing a demonstration of UCN production in this geometry and permitting systematic studies of the influence of thermal up-scatter and contamination with para-deuterium on the UCN survival time.

11.
Phys Rev Lett ; 85(14): 2900-4, 2000 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-11005963

RESUMEN

We have measured the transverse asymmetry A(T') in 3He(e,e(')) quasielastic scattering in Hall A at Jefferson Laboratory with high precision for Q2 values from 0.1 to 0.6 (GeV/c)(2). The neutron magnetic form factor G(n)(M) was extracted based on Faddeev calculations for Q2 = 0.1 and 0.2 (GeV/c)(2) with an experimental uncertainty of less than 2%.

12.
Phys Rev Lett ; 90(9): 092002, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12689215

RESUMEN

Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1. Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q2 between 1.2 and 12 GeV2 and values of W2 between 1 and 4 GeV2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2 above 1.6 GeV2.

13.
Phys Rev Lett ; 92(10): 102003, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15089200

RESUMEN

We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2=0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51+/-0.57 (stat)+/-0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.

14.
Phys Rev Lett ; 87(24): 242501, 2001 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-11736498

RESUMEN

We present the first precision measurement of the spin-dependent asymmetry in the threshold region of 3He(e,e') at Q2 values of 0.1 and 0.2 (GeV/c)2. The agreement between the data and nonrelativistic Faddeev calculations which include both final-state interactions and meson-exchange current effects is very good at Q2 = 0.1 (GeV/c)2, while a small discrepancy at Q2 = 0.2 (GeV/c)2 is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA