Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37376383

RESUMEN

Currently, the preparation of actuators based on ionic electroactive polymers with a fast response is considered an urgent topic. In this article, a new approach to activate polyvinyl alcohol (PVA) hydrogels by applying an AC voltage is proposed. The suggested approach involves an activation mechanism in which the PVA hydrogel-based actuators undergo extension/contraction (swelling/shrinking) cycles due to the local vibration of the ions. The vibration does not cause movement towards the electrodes but results in hydrogel heating, transforming the water molecules into a gaseous state and causing the actuator to swell. Two types of linear actuators based on PVA hydrogels were prepared, using two types of reinforcement for the elastomeric shell (spiral weave and fabric woven braided mesh). The extension/contraction of the actuators, activation time, and efficiency were studied, considering the PVA content, applied voltage, frequency, and load. It was found that the overall extension of the spiral weave-reinforced actuators under a load of ~20 kPa can reach more than 60%, with an activation time of ~3 s by applying an AC voltage of 200 V and a frequency of 500 Hz. Conversely, the overall contraction of the actuators reinforced by fabric woven braided mesh under the same conditions can reach more than 20%, with an activation time of ~3 s. Moreover, the activation force (swelling load) of the PVA hydrogels can reach up to 297 kPa. The developed actuators have broad applications in medicine, soft robotics, the aerospace industry, and artificial muscles.

2.
Polymers (Basel) ; 15(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376401

RESUMEN

Elastomeric materials have great application potential in actuator design and soft robot development. The most common elastomers used for these purposes are polyurethanes, silicones, and acrylic elastomers due to their outstanding physical, mechanical, and electrical properties. Currently, these types of polymers are produced by traditional synthetic methods, which may be harmful to the environment and hazardous to human health. The development of new synthetic routes using green chemistry principles is an important step to reduce the ecological footprint and create more sustainable biocompatible materials. Another promising trend is the synthesis of other types of elastomers from renewable bioresources, such as terpenes, lignin, chitin, various bio-oils, etc. The aim of this review is to address existing approaches to the synthesis of elastomers using "green" chemistry methods, compare the properties of sustainable elastomers with the properties of materials produced by traditional methods, and analyze the feasibility of said sustainable elastomers for the development of actuators. Finally, the advantages and challenges of existing "green" methods of elastomer synthesis will be summarized, along with an estimation of future development prospects.

3.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080587

RESUMEN

Polymer smart materials are a broad class of polymeric materials that can change their shapes, mechanical responses, light transmissions, controlled releases, and other functional properties under external stimuli. A good understanding of the aspects controlling various types of shape memory phenomena in shape memory polymers (SMPs), such as polymer structure, stimulus effect and many others, is not only important for the preparation of new SMPs with improved performance, but is also useful for the optimization of the current ones to expand their application field. In the present era, simple understanding of the activation mechanisms, the polymer structure, the effect of the modification of the polymer structure on the activation process using fillers or solvents to develop new reliable SMPs with improved properties, long lifetime, fast response, and the ability to apply them under hard conditions in any environment, is considered to be an important topic. Moreover, good understanding of the activation mechanism of the two-way shape memory effect in SMPs for semi-crystalline polymers and liquid crystalline elastomers is the main key required for future investigations. In this article, the principles of the three basic types of external stimuli (heat, chemicals, light) and their key parameters that affect the efficiency of the SMPs are reviewed in addition to several prospective applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA