Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Membr Biol ; 257(1-2): 25-36, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285125

RESUMEN

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Ratones , Ratas , Humanos , Conejos , Animales , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Ventrículos Cardíacos , Mamíferos/metabolismo , Calcio/metabolismo
2.
Pflugers Arch ; 475(5): 569-581, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36881190

RESUMEN

Inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are homologous cation channels that mediate release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) and thereby are involved in many physiological processes. In previous studies, we determined that when the D2594 residue, located at or near the gate of the IP3R type 1, was replaced by lysine (D2594K), a gain of function was obtained. This mutant phenotype was characterized by increased IP3 sensitivity. We hypothesized the IP3R1-D2594 determines the ligand sensitivity of the channel by electrostatically affecting the stability of the closed and open states. To test this possibility, the relationship between the D2594 site and IP3R1 regulation by IP3, cytosolic, and luminal Ca2+ was determined at the cellular, subcellular, and single-channel levels using fluorescence Ca2+ imaging and single-channel reconstitution. We found that in cells, D2594K mutation enhances the IP3 ligand sensitivity. Single-channel IP3R1 studies revealed that the conductance of IP3R1-WT and -D2594K channels is similar. However, IP3R1-D2594K channels exhibit higher IP3 sensitivity, with substantially greater efficacy. In addition, like its wild type (WT) counterpart, IP3R1-D2594K showed a bell-shape cytosolic Ca2+-dependency, but D2594K had greater activity at each tested cytosolic free Ca2+ concentration. The IP3R1-D2594K also had altered luminal Ca2+ sensitivity. Unlike IP3R1-WT, D2594K channel activity did not decrease at low luminal Ca2+ levels. Taken together, our functional studies indicate that the substitution of a negatively charged residue by a positive one at the channels' pore cytosolic exit affects the channel's gating behavior thereby explaining the enhanced ligand-channel's sensitivity.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ligandos , Mutación , Retículo Endoplásmico/metabolismo , Calcio/metabolismo
3.
J Cell Physiol ; 237(8): 3305-3316, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35621185

RESUMEN

Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an intracellular Ca2+ release channel critical for numerous cellular processes. Despite its ubiquitous physiological significance, ITPR1 mutations have thus far been linked to primarily movement disorders. Surprisingly, most disease-associated ITPR1 mutations generate a loss of function. This leaves our understanding of ITPR1-associated pathology oddly one-sided, as little is known about the pathological consequences of ITPR1 gain of function (GOF). To this end, we generated an ITPR1 gating domain mutation (D2594K) that substantially enhanced the inositol trisphosphate (IP3 )-sensitivity of ITPR1, and a mouse model expressing this ITPR1-D2594K+/- GOF mutation. We found that heterozygous ITPR1-D2594K+/- mutant mice exhibited male infertility, azoospermia, and acrosome loss. Furthermore, we functionally characterized a human ITPR1 variant V494I identified in the UK Biobank database as potentially associated with disorders of the testis. We found that the ITPR1-V494I variant significantly enhanced IP3 -induced Ca2+ release in HEK293 cells. Thus, ITPR1 hyperactivity may increase the risk of testicular dysfunction.


Asunto(s)
Mutación con Ganancia de Función , Infertilidad Masculina , Receptores de Inositol 1,4,5-Trifosfato , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Infertilidad Masculina/genética , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Mutación/genética
4.
Pflugers Arch ; 473(3): 435-446, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33608799

RESUMEN

Leak of Ca2+ out of the cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) during diastole is vital to regulate SR Ca2+ levels. This leak can become deleterious when large spontaneous RyR-mediated Ca2+ release events evoke proarrhythmic Ca2+ waves that can lead to delayed after-depolarizations. Here, we model diastolic SR Ca2+ leak at individual SR Ca2+ release sites using computer simulations of RyR arrays like those in the dyadic cleft. The results show that RyR arrays size has a significant effect on SR Ca2+ leak, with bigger arrays producing larger and more frequent Ca2+ release events. Moreover, big RyR arrays are more susceptible to small changes in the levels of dyadic Ca2+ buffers. Such changes in buffering shift Ca2+ leak from small Ca2+ release events (involving few open RyRs) to larger events (with many open RyRs). Moreover, by analyzing a large parameter space of possible buffering and SR Ca2+ loads, we find further evidence for the hypothesis that SR Ca2+ leak by RyR arrays can undergo a sudden phase transition.


Asunto(s)
Calcio/metabolismo , Simulación por Computador , Modelos Cardiovasculares , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Señalización del Calcio/fisiología , Humanos , Miocitos Cardíacos/metabolismo
5.
Circ Res ; 122(6): 821-835, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29352041

RESUMEN

RATIONALE: Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE: To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS: We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS: We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.


Asunto(s)
Fibrilación Atrial/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Señalización del Calcio , Línea Celular , Células Cultivadas , Humanos , Masculino , Ratones , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
Biophys J ; 115(7): 1160-1165, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30220413

RESUMEN

The ryanodine receptor (RyR) ion channel releases Ca2+ from intracellular stores by conducting Ca2+ but also by recruiting neighboring RyRs to open, as RyRs are activated by micromolar levels of cytosolic Ca2+. Using long single-RyR recordings of the cardiac isoform (RyR2), we conclude that Ca2+ binding to the cytosolic face of RyR while the channel is closed determines the distribution of open times. This mechanism explains previous findings that RyR is not activated by its own fluxed Ca2+. Our measurements also bolster previous findings that luminal [Ca2+] can affect both the cytosolic activation and inactivation sites and that RyR has different gating modes for the same ionic conditions.


Asunto(s)
Activación del Canal Iónico , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Cinética , Probabilidad , Unión Proteica
7.
Biophys J ; 114(2): 462-473, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401443

RESUMEN

In muscle, Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is mediated through the ryanodine receptors (RyRs) and sustained by countercurrents that keep the SR membrane potential near 0 mV. Likewise, Ca2+ reuptake by the sarco/endoplasmic reticulum Ca2+ ATPase pump requires countercurrent. Although evidence has suggested that TRIC K+ channels and/or RyR K+ influx provide these countercurrents, the exact sources have not yet been determined. We used an equivalent circuit compartment model of a cardiac SR, the surrounding cytosol, and the dyadic cleft to probe the sources of countercurrent during a complete cardiac cycle. By removing and relocating TRIC K+ channels, as well as limiting when they are active, we explored the various possible sources of SR countercurrent under many conditions. Our simulations indicate that no single channel type is essential for countercurrent. Rather, a cascading network of countercurrents is present with anion fluxes within the SR redistributing charges throughout the full SR volume. This allows ion channels in the entire SR membrane, far from the Ca2+ fluxes through the RyRs in the junctional SR and sarco/endoplasmic reticulum Ca2+ ATPase pump in the nonjunctional SR, to mediate countercurrents that support Ca2+ release and reuptake. This multifactorial network of countercurrents allows Ca2+ release to be remarkably robust.


Asunto(s)
Calcio/metabolismo , Modelos Biológicos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Diástole , Canales de Potasio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sístole
8.
J Biol Chem ; 292(4): 1385-1395, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27927985

RESUMEN

A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+ These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction.


Asunto(s)
Arritmias Cardíacas/metabolismo , Señalización del Calcio , Calcio/metabolismo , Calmodulina/metabolismo , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Arritmias Cardíacas/genética , Calmodulina/genética , Células HEK293 , Humanos , Dominios Proteicos , Canal Liberador de Calcio Receptor de Rianodina/genética
9.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906573

RESUMEN

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiología , Canalopatías/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Envejecimiento , Animales , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Retículo Endoplásmico/fisiología , Femenino , Masculino , Ratones Transgénicos , Células Piramidales/ultraestructura
10.
J Mol Cell Cardiol ; 103: 31-39, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27914790

RESUMEN

During systole, Ca2+ is released from the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) while, simultaneously, other ions (specifically K+, Mg2+, and Cl-) provide counter-ion flux. These ions move back into the SR during diastole through the SERCA pump and SR K+ and Cl- channels. In homeostasis, all ion concentrations in different cellular regions (e.g., junctional and non-junctional SR, dyadic cleft, and cytosol) are the same at the beginning and end of the cardiac cycle. Here, we used an equivalent circuit compartment model of the SR and the surrounding cytoplasm to understand the heart rate dependence of SR ion homeostasis. We found that the Ca2+, Mg2+, K+, and Cl- concentrations in the SR and the cytoplasm self-adjust within just a few heartbeats with only very small changes in Mg2+, K+, and Cl- concentrations and membrane voltages (just a few percent). However, those small changes were enough to compensate for the large heart-rate-dependent changes in SR and cytoplasmic Ca2+ concentrations in the new steady state. The modeling suggests that ion adaptation to increases in heart rate is inherent to the system and that physiological changes that increase contractility and cardiac output are accommodated by the same self-adjusting mechanism of producing small changes in ion driving forces. Our findings also support the long-held hypothesis that SR membrane potentials are small (~1-2mV).


Asunto(s)
Calcio/metabolismo , Cloruros/metabolismo , Frecuencia Cardíaca , Magnesio/metabolismo , Miocardio/metabolismo , Potasio/metabolismo , Retículo Sarcoplasmático/metabolismo , Algoritmos , Animales , Fenómenos Electrofisiológicos , Iones/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Contracción Miocárdica
11.
Biochem J ; 473(22): 4159-4172, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27623776

RESUMEN

ß-Blockers are a standard treatment for heart failure and cardiac arrhythmias. There are ∼30 commonly used ß-blockers, representing a diverse class of drugs with different receptor affinities and pleiotropic properties. We reported that among 14 ß-blockers tested previously, only carvedilol effectively suppressed cardiac ryanodine receptor (RyR2)-mediated spontaneous Ca2+ waves during store Ca2+ overload, also known as store overload-induced Ca2+ release (SOICR). Given the critical role of SOICR in arrhythmogenesis, it is of importance to determine whether there are other ß-blockers that suppress SOICR. Here, we assessed the effect of other commonly used ß-blockers on RyR2-mediated SOICR in HEK293 cells, using single-cell Ca2+ imaging. Of the 13 ß-blockers tested, only nebivolol, a ß-1-selective ß-blocker with nitric oxide synthase (NOS)-stimulating action, effectively suppressed SOICR. The NOS inhibitor (N-nitro-l-arginine methyl ester) had no effect on nebivolol's SOICR inhibition, and the NOS activator (histamine or prostaglandin E2) alone did not inhibit SOICR. Hence, nebivolol's SOICR inhibition was independent of NOS stimulation. Like carvedilol, nebivolol reduced the opening of single RyR2 channels and suppressed spontaneous Ca2+ waves in intact hearts and catecholaminergic polymorphic ventricular tachycardia (CPVT) in the mice harboring a RyR2 mutation (R4496C). Interestingly, a non-ß-blocking nebivolol enantiomer, (l)-nebivolol, also suppressed SOICR and CPVT without lowering heart rate. These data indicate that nebivolol, like carvedilol, possesses a RyR2-targeted action that suppresses SOICR and SOICR-evoked VTs. Thus, nebivolol represents a promising agent for Ca2+-triggered arrhythmias.


Asunto(s)
Calcio/metabolismo , Nebivolol/farmacología , Nebivolol/uso terapéutico , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Agonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Carbazoles/farmacología , Carbazoles/uso terapéutico , Carvedilol , Electrocardiografía , Células HEK293 , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos , Ratones , Ratones Mutantes , Óxido Nítrico Sintasa/metabolismo , Propanolaminas/farmacología , Propanolaminas/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/metabolismo
12.
Biochem J ; 470(2): 233-42, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348911

RESUMEN

Carvedilol is the current ß-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol's benefits are dose-limited, attributable to its potent ß-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of ß-blocking S-carvedilol and non-ß-blocking R-carvedilol. We recently reported that novel non-ß-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca(2+) waves and stress-induced VT without causing bradycardia. Thus, the non-ß-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca(2+) release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca(2+) oscillations in human embryonic kidney (HEK) 293 cells, Ca(2+) waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-ß-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca(2+)- triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted.


Asunto(s)
Antiarrítmicos/farmacología , Calcio/metabolismo , Carbazoles/farmacología , Propanolaminas/farmacología , Taquicardia Ventricular/fisiopatología , Animales , Antiarrítmicos/química , Antiarrítmicos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Carbazoles/química , Carbazoles/uso terapéutico , Carvedilol , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Activación del Canal Iónico , Ratones , Ratones Mutantes , Mutación , Miocardio/metabolismo , Propanolaminas/química , Propanolaminas/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Estereoisomerismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/etiología
13.
Proc Natl Acad Sci U S A ; 110(25): 10312-7, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733959

RESUMEN

Dysregulated intracellular Ca(2+) signaling is implicated in a variety of cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia. Spontaneous diastolic Ca(2+) release (DCR) can induce arrhythmogenic plasma membrane depolarizations, although the mechanism responsible for DCR synchronization among adjacent myocytes required for ectopic activity remains unclear. We investigated the synchronization mechanism(s) of DCR underlying untimely action potentials and diastolic contractions (DCs) in a catecholaminergic polymorphic ventricular tachycardia mouse model with a mutation in cardiac calsequestrin. We used a combination of different approaches including single ryanodine receptor channel recording, optical imaging (Ca(2+) and membrane potential), and contractile force measurements in ventricular myocytes and intact cardiac muscles. We demonstrate that DCR occurs in a temporally and spatially uniform manner in both myocytes and intact myocardial tissue isolated from cardiac calsequestrin mutation mice. Such synchronized DCR events give rise to triggered electrical activity that results in synchronous DCs in the myocardium. Importantly, we establish that synchronization of DCR is a result of a combination of abbreviated ryanodine receptor channel refractoriness and the preceding synchronous stimulated Ca(2+) release/reuptake dynamics. Our study reveals how aberrant DCR events can become synchronized in the intact myocardium, leading to triggered activity and the resultant DCs in the settings of a cardiac rhythm disorder.


Asunto(s)
Señalización del Calcio/fisiología , Calsecuestrina/genética , Corazón/fisiología , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/fisiopatología , Animales , Calcio/metabolismo , Calsecuestrina/fisiología , Diástole/fisiología , Modelos Animales de Enfermedad , Ventrículos Cardíacos/citología , Masculino , Ratones , Ratones Mutantes , Mutación , Miocitos Cardíacos/fisiología , Músculos Papilares/citología , Músculos Papilares/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
14.
Biochem J ; 461(1): 99-106, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24758151

RESUMEN

CASQ2 (cardiac calsequestrin) is commonly believed to serve as the SR (sarcoplasmic reticulum) luminal Ca2+ sensor. Ablation of CASQ2 promotes SCWs (spontaneous Ca2+ waves) and CPVT (catecholaminergic polymorphic ventricular tachycardia) upon stress but not at rest. How SCWs and CPVT are triggered by stress in the absence of the CASQ2-based luminal Ca2+ sensor is an important unresolved question. In the present study, we assessed the role of the newly identified RyR2 (ryanodine receptor 2)-resident luminal Ca2+ sensor in determining SCW propensity, CPVT susceptibility and cardiac hypertrophy in Casq2-KO (knockout) mice. We crossbred Casq2-KO mice with RyR2 mutant (E4872Q+/-) mice, which lack RyR2-resident SR luminal Ca2+ sensing, to generate animals with both deficiencies. Casq2+/- and Casq2-/- mice showed stress-induced VTs (ventricular tachyarrhythmias), whereas Casq2+/-/E4872Q+/- and Casq2-/-/E4872Q+/- mice displayed little or no stress-induced VTs. Confocal Ca2+ imaging revealed that Casq2-/- hearts frequently exhibited SCWs after extracellular Ca2+ elevation or adrenergic stimulation, whereas Casq2-/-/E4872Q+/- hearts had few or no SCWs under the same conditions. Cardiac hypertrophy developed and CPVT susceptibility increased with age in Casq2-/- mice, but not in Casq2-/-/E4872Q+/- mice. However, the amplitudes and dynamics of voltage-induced Ca2+ transients in Casq2-/- and Casq2-/-/E4872Q+/- hearts were not significantly different. Our results indicate that SCWs, CPVT and hypertrophy in Casq2-null cardiac muscle are governed by the RyR2-resident luminal Ca2+ sensor. This implies that defects in CASQ2-based lumi-nal Ca2+ sensing can be overridden by the RyR2-resident luminal Ca2+ sensor. This makes this RyR2-resident sensor a promising molecular target for the treatment of Ca2+-mediated arrhythmias.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Calsecuestrina/deficiencia , Cardiomegalia/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Taquicardia Ventricular/metabolismo , Animales , Calsecuestrina/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Ratones , Ratones Noqueados , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatología
15.
Circ Res ; 111(1): 28-36, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22628577

RESUMEN

RATIONALE: In cardiac muscle, Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) is mediated by ryanodine receptor (RyR) Ca(2+) release channels. The inherent positive feedback of CICR is normally well-controlled. Understanding this control mechanism is a priority because its malfunction has life-threatening consequences. OBJECTIVE: We show that CICR local control is governed by SR Ca(2+) load, largely because load determines the single RyR current amplitude that drives inter-RyR CICR. METHODS AND RESULTS: We differentially manipulated single RyR Ca(2+) flux amplitude and SR Ca(2+) load in permeabilized ventricular myocytes as an endogenous cell biology model of the heart. Large RyR-permeable organic cations were used to interfere with Ca(2+) conductance through the open RyR pore. Single-channel studies show this attenuates current amplitude without altering other aspects of RyR function. In cells, the same experimental maneuver increased resting SR Ca(2+) load. Despite the increased load, Ca(2+) spark (inter-RyR CICR events) frequency decreased and sparks terminated earlier. CONCLUSIONS: Spark local control follows single RyR current amplitude, not simply SR Ca(2+) load. Spark frequency increases with load because spontaneous RyR openings at high loads produce larger currents (ie, a larger CICR trigger signal). Sparks terminate when load falls to the point at which single RyR current amplitude is no longer sufficient to sustain inter-RyR CICR. Thus, RyRs that spontaneously close no longer reopen and local Ca(2+) release ends.


Asunto(s)
Señalización del Calcio , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Etanolaminas/metabolismo , Retroalimentación Fisiológica , Fluorometría , Activación del Canal Iónico/efectos de los fármacos , Lisina/metabolismo , Magnesio/metabolismo , Potenciales de la Membrana , Microsomas , Miocitos Cardíacos/efectos de los fármacos , Potasio/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos , Factores de Tiempo
16.
Circ Res ; 110(7): 968-77, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22374134

RESUMEN

RATIONALE: Naturally occurring mutations in the cardiac ryanodine receptor (RyR2) have been associated with both cardiac arrhythmias and cardiomyopathies. It is clear that delayed afterdepolarization resulting from abnormal activation of sarcoplasmic reticulum Ca2+ release is the primary cause of RyR2-associated cardiac arrhythmias. However, the mechanism underlying RyR2-associated cardiomyopathies is completely unknown. OBJECTIVE: In the present study, we investigate the role of the NH2-terminal region of RyR2 in and the impact of a number of cardiomyopathy-associated RyR2 mutations on the termination of Ca2+ release. METHODS AND RESULTS: The 35-residue exon-3 region of RyR2 is associated with dilated cardiomyopathy. Single-cell luminal Ca2+ imaging revealed that the deletion of the first 305 NH2-terminal residues encompassing exon-3 or the deletion of exon-3 itself markedly reduced the luminal Ca2+ threshold at which Ca2+ release terminates and increased the fractional Ca2+ release. Single-cell cytosolic Ca2+ imaging also showed that both RyR2 deletions enhanced the amplitude of store overload-induced Ca2+ transients in HEK293 cells or HL-1 cardiac cells. Furthermore, the RyR2 NH2-terminal mutations, A77V, R176Q/T2504M, R420W, and L433P, which are associated with arrhythmogenic right ventricular displasia type 2, also reduced the threshold for Ca2+ release termination and increased fractional release. The RyR2 A1107M mutation associated with hypertrophic cardiomyopathy had the opposite action (i.e., increased the threshold for Ca2+ release termination and reduced fractional release). CONCLUSIONS: These results provide the first evidence that the NH2-terminal region of RyR2 is an important determinant of Ca2+ release termination, and that abnormal fractional Ca2+ release attributable to aberrant termination of Ca2+ release is a common defect in RyR2-associated cardiomyopathies.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Cardiomiopatías/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Línea Celular , Células Cultivadas , Exones/genética , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Modelos Animales , Miocitos Cardíacos/citología , Retículo Sarcoplasmático/metabolismo , Transfección
17.
J Mater Chem C Mater ; 12(24): 8759-8776, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38912177

RESUMEN

Metal-organic frameworks (MOFs) have gathered significant interest due to their tunable porosity leading to diverse potential applications. In this study, we investigate the incorporation of the fluorosolvatochromic dye 2-butyl-5,6-dimethoxyisoindoline-1,3-dione ([double bond, length as m-dash]Phth) into various MOF structures as a means to assess the polarity of these porous materials. As a purely inorganic compound, zeolite Y was tested for comparison. The fluorosolvatochromic behavior of Phth, which manifests as changes in its emission spectra in response to solvent polarity, provides a sensitive probe for characterizing the local environment within the MOF pores. Through systematic variation of the MOF frameworks, we demonstrate the feasibility of using (fluoro-)solvatochromic dyes as probes for assessing the polarity gradients within MOF structures. Additionally, the fluorosolvatochromic response was studied as a function of loading amount. Our findings not only offer insights into the interplay between MOF architecture and guest molecule interactions but also present a promising approach for the rational design and classification of porous materials based on their polarity properties.

18.
Biophys J ; 105(5): 1151-60, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24010658

RESUMEN

The charge translocation associated with sarcoplasmic reticulum (SR) Ca(2+) efflux is compensated for by a simultaneous SR K(+) influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca(2+) equilibrium potential and SR Ca(2+) release would cease. The SR K(+) trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K(+) countercurrent during release. To better define the physiological role of the SR K(+) channel, we compared SR Ca(2+) transport in saponin-permeabilized cardiomyocytes before and after limiting SR K(+) channel function. Specifically, we reduced SR K(+) channel conduction 35 and 88% by replacing cytosolic K(+) for Na(+) or Cs(+) (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca(2+) reloading, and caffeine-evoked Ca(2+) release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K(+) (TRIC) channels is not required to support SR Ca(2+) release (or uptake). Because K(+) enters the SR through RyRs during release, the SR K(+) (TRIC) channel most likely is needed to restore trans-SR K(+) balance after RyRs close, assuring SR Vm stays near 0 mV.


Asunto(s)
Calcio/metabolismo , Canales Iónicos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Células Musculares/citología , Ratas , Retículo Sarcoplasmático/efectos de los fármacos
19.
J Mol Cell Cardiol ; 58: 53-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23369697

RESUMEN

In cardiac muscle cells, ryanodine receptor (RyR) mediated Ca(2+) release from the sarcoplasmic reticulum (SR) drives the contractile apparatus. Spontaneous bouts of inter-RyR Ca(2+) induced Ca(2+) release (CICR) generate an elemental unit of SR Ca(2+) release called a spark. Sparks are localized events that terminate soon after they begin. The local control of sparks is not clearly understood. In this article, we review the potential regulatory role that the changing single RyR Ca(2+) current may play. Moreover, we aggregate RyR data into a working scheme of inter-RyR CICR current control of sparks and a potential inter-RyR CICR termination mechanism that we call pernicious attrition.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/fisiología , Humanos , Activación del Canal Iónico/fisiología , Contracción Miocárdica/fisiología , Miocardio/citología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiología
20.
Biophys J ; 100(4): 931-8, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21320437

RESUMEN

Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ∼75% and single RyR2 opening frequency ∼150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.


Asunto(s)
Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Bovinos , Conejos , Ratas , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA