Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 162(3): 527-39, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232223

RESUMEN

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Asunto(s)
Evolución Biológica , Hordeum/fisiología , Dispersión de Semillas , Secuencia de Aminoácidos , Hordeum/anatomía & histología , Hordeum/genética , Datos de Secuencia Molecular , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia
2.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38750617

RESUMEN

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Asunto(s)
Glicosiltransferasas , beta-Glucanos , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo
3.
Plant Physiol ; 194(1): 33-50, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37594400

RESUMEN

Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-ß-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-ß-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-ß-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-ß-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-ß-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-ß-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 ß-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.


Asunto(s)
beta-Glucanos , beta-Glucanos/metabolismo , Hidrólisis , Poaceae/metabolismo , Polisacáridos/metabolismo , Pared Celular/metabolismo
4.
Plant J ; 104(4): 1009-1022, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890421

RESUMEN

Barley (Hordeum vulgare L) grain is comparatively rich in (1,3;1,4)-ß-glucan, a source of fermentable dietary fibre that protects against various human health conditions. However, low grain (1,3;1,4)-ß-glucan content is preferred for brewing and distilling. We took a reverse genetics approach, using CRISPR/Cas9 to generate mutations in members of the Cellulose synthase-like (Csl) gene superfamily that encode known (HvCslF6 and HvCslH1) and putative (HvCslF3 and HvCslF9) (1,3;1,4)-ß-glucan synthases. Resultant mutations ranged from single amino acid (aa) substitutions to frameshift mutations causing premature stop codons, and led to specific differences in grain morphology, composition and (1,3;1,4)-ß-glucan content. (1,3;1,4)-ß-Glucan was absent in the grain of cslf6 knockout lines, whereas cslf9 knockout lines had similar (1,3;1,4)-ß-glucan content to wild-type (WT). However, cslf9 mutants showed changes in the abundance of other cell-wall-related monosaccharides compared with WT. Thousand grain weight (TGW), grain length, width and surface area were altered in cslf6 knockouts, and to a lesser extent TGW in cslf9 knockouts. cslf3 and cslh1 mutants had no effect on grain (1,3;1,4)-ß-glucan content. Our data indicate that multiple members of the CslF/H family fulfil important functions during grain development but, with the exception of HvCslF6, do not impact the abundance of (1,3;1,4)-ß-glucan in mature grain.


Asunto(s)
Hordeum/enzimología , Proteínas de Plantas/metabolismo , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Grano Comestible , Edición Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Hordeum/genética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo
5.
Plant Cell ; 30(6): 1293-1308, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29674386

RESUMEN

Mixed-linkage (1,3;1,4)-ß-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella patens (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether Pp3c12_24670 encodes an MLG synthase by expressing it in wild tobacco (Nicotiana benthamiana) and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-ß-glucan endohydrolase. Lichenase, an MLG-specific endohydrolase, showed no activity against cell walls from transformed N. benthamiana, but (1,4)-ß-glucan endohydrolase released oligosaccharides that were distinct from oligosaccharides released from MLG by this enzyme. Further analysis revealed that these oligosaccharides were derived from a novel unbranched, unsubstituted arabinoglucan (AGlc) polysaccharide. We identified sequences similar to the P. patens AGlc synthase from algae, bryophytes, lycophytes, and monilophytes, raising the possibility that other early divergent plants synthesize AGlc. Similarity of P. patens AGlc synthase to MLG synthases from ascomycetes, but not those from Poaceae, suggests that AGlc and MLG have a common evolutionary history that includes loss in seed plants, followed by a more recent independent origin of MLG within the monocots.


Asunto(s)
Bryopsida/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/metabolismo
6.
J Exp Bot ; 71(6): 1870-1884, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31819970

RESUMEN

Mobilization of reserves in germinated cereal grains is critical for early seedling vigour, global crop productivity, and hence food security. Gibberellins (GAs) are central to this process. We have developed a spatio-temporal model that describes the multifaceted mechanisms of GA regulation in germinated barley grain. The model was generated using RNA sequencing transcript data from tissues dissected from intact, germinated grain, which closely match measurements of GA hormones and their metabolites in those tissues. The data show that successful grain germination is underpinned by high concentrations of GA precursors in ungerminated grain, the use of independent metabolic pathways for the synthesis of several bioactive GAs during germination, and a capacity to abort bioactive GA biosynthesis. The most abundant bioactive form is GA1, which is synthesized in the scutellum as a glycosyl conjugate that diffuses to the aleurone, where it stimulates de novo synthesis of a GA3 conjugate and GA4. Synthesis of bioactive GAs in the aleurone provides a mechanism that ensures the hormonal signal is relayed from the scutellum to the distal tip of the grain. The transcript data set of 33 421 genes used to define GA metabolism is available as a resource to analyse other physiological processes in germinated grain.


Asunto(s)
Giberelinas , Hordeum , Germinación , Hordeum/genética , Plantones , Análisis de Secuencia de ARN
7.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331292

RESUMEN

Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine. However, this dietary component can be digested by microorganisms in the large intestine and imparts physiological benefits at daily intake levels of 30-35 g. Dietary fibre in cereal grains largely comprises cell wall polymers and includes insoluble (cellulose, part of the hemicellulose component and lignin) and soluble (arabinoxylans and (1,3;1,4)-ß-glucans) fibre. More specifically, certain components provide immunomodulatory and cholesterol lowering activity, faecal bulking effects, enhanced absorption of certain minerals, prebiotic effects and, through these effects, reduce the risk of type II diabetes, cardiovascular disease and colorectal cancer. Thus, dietary fibre is attracting increasing interest from cereal processors, producers and consumers. Compared with other components of the durum wheat grain, fibre components have not been studied extensively. Here, we have summarised the current status of knowledge on the genetic control of arabinoxylan and (1,3;1,4)-ß-glucan synthesis and accumulation in durum wheat grain. Indeed, the recent results obtained in durum wheat open the way for the improvement of these important cereal quality parameters.


Asunto(s)
Polisacáridos/química , Triticum/química , Triticum/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Fenómenos Químicos , Fibras de la Dieta/análisis , Grano Comestible/química , Glucanos/biosíntesis , Glucanos/química , Interacciones Huésped-Patógeno , Estructura Molecular , Nutrientes/análisis , Nutrientes/química , Polisacáridos/análisis , Polisacáridos/biosíntesis , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Triticum/genética , Xilanos/biosíntesis , Xilanos/química
8.
Plant Physiol ; 177(3): 1124-1141, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29780036

RESUMEN

Cell walls are crucial for the integrity and function of all land plants and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterization of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was thought previously to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-ß-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/genética , Filogenia , Proteínas de Plantas/genética , Evolución Molecular , Glucosiltransferasas/metabolismo , Magnoliopsida/enzimología , Magnoliopsida/genética , Familia de Multigenes , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Poaceae/enzimología , Poaceae/genética , Nicotiana/genética , Nicotiana/metabolismo , beta-Glucanos/metabolismo
9.
Plant J ; 91(4): 754-765, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28509349

RESUMEN

Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination.


Asunto(s)
Hordeum/genética , Proteínas de Plantas/genética , Almidón/metabolismo , Secuencia de Bases , Pared Celular/metabolismo , Grano Comestible/genética , Grano Comestible/fisiología , Endospermo/genética , Endospermo/fisiología , Perfilación de la Expresión Génica , Germinación , Hordeum/fisiología , Mitocondrias/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
10.
Plant Cell Environ ; 41(9): 2195-2208, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29532951

RESUMEN

Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea.


Asunto(s)
Pared Celular/química , Cicer/citología , Cicer/genética , Harina/análisis , Pared Celular/genética , Celulosa/análisis , Culinaria , Cotiledón/química , Genotipo , Monosacáridos/análisis , Pectinas/análisis , Polisacáridos/análisis , Polisacáridos/química , Factores de Tiempo
11.
Nature ; 491(7426): 711-6, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23075845

RESUMEN

Barley (Hordeum vulgare L.) is among the world's earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 'high-confidence' genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Asunto(s)
Genoma de Planta/genética , Hordeum/genética , Análisis de Secuencia de ADN , Empalme Alternativo/genética , Codón sin Sentido/genética , Productos Agrícolas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genómica , Hordeum/clasificación , Anotación de Secuencia Molecular , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transcriptoma/genética
12.
J Integr Plant Biol ; 60(5): 382-396, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29247595

RESUMEN

Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-ß-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition.


Asunto(s)
Ligamiento Genético , Hordeum/genética , Semillas/genética , Transformación Genética , beta-Glucanos/metabolismo , Hordeum/embriología , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regeneración , Plantones/metabolismo , Almidón/metabolismo
13.
Plant Physiol ; 170(3): 1549-65, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754666

RESUMEN

Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development.


Asunto(s)
Endospermo/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Pared Celular/genética , Pared Celular/metabolismo , Análisis por Conglomerados , Grano Comestible/citología , Grano Comestible/embriología , Grano Comestible/genética , Endospermo/citología , Endospermo/embriología , Ontología de Genes , Redes Reguladoras de Genes , Hordeum/citología , Hordeum/embriología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Polinización/genética , Factores de Tiempo
14.
Biochemistry ; 55(13): 2054-61, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26967377

RESUMEN

Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-ß-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-ß-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-ß-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.


Asunto(s)
Fibras de la Dieta/análisis , Glucosiltransferasas/metabolismo , Hordeum/enzimología , Modelos Moleculares , Proteínas de Plantas/metabolismo , Sorghum/enzimología , beta-Glucanos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Biología Computacional , Sistemas Especialistas , Glucosiltransferasas/química , Glucosiltransferasas/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Conformación Molecular , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutación Puntual , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , beta-Glucanos/química
15.
Biochemistry ; 55(2): 322-34, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26645466

RESUMEN

Four members of the UDP-Ara mutase (UAM) gene family from barley have been isolated and characterized, and their map positions on chromosomes 2H, 3H, and 4H have been defined. When the genes are expressed in Escherichia coli, the corresponding HvUAM1, HvUAM2, and HvUAM3 proteins exhibit UAM activity, and the kinetic properties of the enzymes have been determined, including Km, Kcat, and catalytic efficiencies. However, the expressed HvUAM4 protein shows no mutase activity against UDP-Ara or against a broad range of other nucleotide sugars and related molecules. The enzymic data indicate therefore that the HvUAM4 protein may not be a mutase. However, the HvUAM4 gene is transcribed at high levels in all the barley tissues examined, and its transcript abundance is correlated with transcript levels for other genes involved in cell wall biosynthesis. The UDP-l-Arap → UDP-l-Araf reaction, which is essential for the generation of the UDP-Araf substrate for arabinoxylan, arabinogalactan protein, and pectic polysaccharide biosynthesis, is thermodynamically unfavorable and has an equilibrium constant of 0.02. Nevertheless, the incorporation of Araf residues into nascent polysaccharides clearly occurs at biologically appropriate rates. The characterization of the HvUAM genes opens the way for the manipulation of both the amounts and fine structures of heteroxylans in cereals, grasses, and other crop plants, with a view toward enhancing their value in human health and nutrition, and in renewable biofuel production.


Asunto(s)
Hordeum/enzimología , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
New Phytol ; 212(2): 434-43, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27364233

RESUMEN

The recent characterization of the polysaccharide composition of papillae deposited at the barley cell wall during infection by the powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh), has provided new targets for the generation of enhanced disease resistance. The role of callose in papilla-based penetration resistance of crop species is largely unknown because the genes involved in the observed callose accumulation have not been identified unequivocally. We have employed both comparative and functional genomics approaches to identify the functional orthologue of AtGsl5 in the barley genome. HvGsl6 (the barley glucan synthase-like 6 gene), which has the highest sequence identity to AtGsl5, is the only Bgh-induced gene among the HvGsls examined in this study. Through double-stranded RNA interference (dsRNAi)-mediated silencing of HvGsl6, we have shown that the down-regulation of HvGsl6 is associated with a lower accumulation of papillary and wound callose and a higher susceptibility to penetration of the papillae by Bgh, compared with control lines. The results indicate that the HvGsl6 gene is a functional orthologue of AtGsl5 and is involved in papillary callose accumulation in barley. The increased susceptibility of HvGsl6 dsRNAi transgenic lines to infection indicates that callose positively contributes to the barley fungal penetration resistance mechanism.


Asunto(s)
Ascomicetos/fisiología , Pared Celular/microbiología , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Hordeum/enzimología , Hordeum/genética , Arabidopsis/genética , Regulación hacia Abajo/genética , Hordeum/microbiología , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transformación Genética
17.
New Phytol ; 212(2): 421-33, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27352228

RESUMEN

Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.


Asunto(s)
Ascomicetos/fisiología , Genes de Plantas , Glucosiltransferasas/genética , Hordeum/genética , Hordeum/microbiología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Glucosiltransferasas/metabolismo , Hordeum/enzimología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Análisis de Secuencia de ADN
18.
Plant Physiol ; 168(3): 968-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25999407

RESUMEN

Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades. Genes in the CslF clade are of particular interest because some mediate the synthesis of (1,3;1,4)-ß-glucan, a polysaccharide characteristic of the evolutionarily successful grasses that is not widely distributed elsewhere in the plant kingdom. The phylogeny suggests that duplication of either CslF6 and/or CslF7 produced the ancestor of a highly conserved cluster of CslF genes that remain located in syntenic regions of all the grass genomes examined. A CslF6-specific insert encoding approximately 55 amino acid residues has subsequently been incorporated into the gene, or possibly lost from other CslFs, and the CslF7 clade has undergone a significant long-term shift in selection pressure. Homology modeling and molecular dynamics of the CslF6 protein were used to define the three-dimensional dispositions of individual amino acids that are subject to strong ongoing selection, together with the position of the conserved 55-amino acid insert that is known to influence the amounts and fine structures of (1,3;1,4)-ß-glucans synthesized. These wall polysaccharides are attracting renewed interest because of their central roles as sources of dietary fiber in human health and for the generation of renewable liquid biofuels.


Asunto(s)
Evolución Molecular , Genes de Plantas , Glucosiltransferasas/genética , Familia de Multigenes , Poaceae/enzimología , Poaceae/genética , Sustitución de Aminoácidos , Aminoácidos/genética , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Modelos Moleculares , Filogenia , Selección Genética , Homología Estructural de Proteína
19.
BMC Plant Biol ; 15: 62, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25850007

RESUMEN

BACKGROUND: The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). RESULTS: Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven by the CaMV 35S promoter, were analysed for growth and morphology, transcript levels, cellulose content, stem strength, tissue morphology and crystalline cellulose distribution. Transcript levels of the PCW HvCesA transgenes were much lower than expected and silencing of both the endogenous CesA genes and introduced transgenes was often observed. These plants showed no aberrant phenotypes. Although attempts to over-express the SCW HvCesA genes also resulted in silencing of the transgenes and endogenous SCW HvCesA genes, aberrant phenotypes were sometimes observed. These included brittle nodes and, with the 35S:HvCesA4 construct, a more severe dwarfing phenotype, where xylem cells were irregular in shape and partially collapsed. Reductions in cellulose content were also observed in the dwarf plants and transmission electron microscopy showed a significant decrease in cell wall thickness. However, there were no increases in overall crystalline cellulose content or stem strength in the CesA over-expression transgenic plants, despite the use of a powerful constitutive promoter. CONCLUSIONS: The results indicate that the cellulose biosynthetic pathway is tightly regulated, that individual CesA proteins may play different roles in the synthase complex, and that the sensitivity to CesA gene manipulation observed here suggests that in planta engineering of cellulose levels is likely to require more sophisticated strategies.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Silenciador del Gen , Hordeum/citología , Hordeum/genética , Transcripción Genética , Pared Celular/ultraestructura , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Lignina/metabolismo , Especificidad de Órganos , Fenotipo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
BMC Plant Biol ; 15: 236, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26432387

RESUMEN

BACKGROUND: Setaria viridis has emerged as a model species for the larger C4 grasses. Here the cellulose synthase (CesA) superfamily has been defined, with an emphasis on the amounts and distribution of (1,3;1,4)-ß-glucan, a cell wall polysaccharide that is characteristic of the grasses and is of considerable value for human health. METHODS: Orthologous relationship of the CesA and Poales-specific cellulose synthase-like (Csl) genes among Setaria italica (Si), Sorghum bicolor (Sb), Oryza sativa (Os), Brachypodium distachyon (Bradi) and Hordeum vulgare (Hv) were compared using bioinformatics analysis. Transcription profiling of Csl gene families, which are involved in (1,3;1,4)-ß-glucan synthesis, was performed using real-time quantitative PCR (Q-PCR). The amount of (1,3;1,4)-ß-glucan was measured using a modified Megazyme assay. The fine structures of the (1,3;1,4)-ß-glucan, as denoted by the ratio of cellotriosyl to cellotetraosyl residues (DP3:DP4 ratio) was assessed by chromatography (HPLC and HPAEC-PAD). The distribution and deposition of the MLG was examined using the specific antibody BG-1 and captured using fluorescence and transmission electron microscopy (TEM). RESULTS: The cellulose synthase gene superfamily contains 13 CesA and 35 Csl genes in Setaria. Transcript profiling of CslF, CslH and CslJ gene families across a vegetative tissue series indicated that SvCslF6 transcripts were the most abundant relative to all other Csl transcripts. The amounts of (1,3;1,4)-ß-glucan in Setaria vegetative tissues ranged from 0.2% to 2.9% w/w with much smaller amounts in developing grain (0.003% to 0.013% w/w). In general, the amount of (1,3;1,4)-ß-glucan was greater in younger than in older tissues. The DP3:DP4 ratios varied between tissue types and across developmental stages, and ranged from 2.4 to 3.0:1. The DP3:DP4 ratios in developing grain ranged from 2.5 to 2.8:1. Micrographs revealing the distribution of (1,3;1,4)-ß-glucan in walls of different cell types and the data were consistent with the quantitative (1,3;1,4)-ß-glucan assays. CONCLUSION: The characteristics of the cellulose synthase gene superfamily and the accumulation and distribution of (1,3;1,4)-ß-glucans in Setaria are similar to those in other C4 grasses, including sorghum. This suggests that Setaria is a suitable model plant for cell wall polysaccharide biology in C4 grasses.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/genética , Polisacáridos/genética , Setaria (Planta)/genética , beta-Glucanos/metabolismo , Glucosiltransferasas/metabolismo , Filogenia , Polisacáridos/metabolismo , Setaria (Planta)/citología , Setaria (Planta)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA