Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vasc Res ; 61(1): 26-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113863

RESUMEN

INTRODUCTION: Tunica media extracellular matrix (ECM) remodeling is well understood to occur in response to elevated blood pressure, unlike the remodeling of other tunicas. We hypothesize that perivascular adipose tissue (PVAT) is responsive to hypertension and remodels as a protective measure. METHODS: The adventitia and PVAT of the thoracic aorta were used in measuring ECM genes from 5 pairs of Dahl SS male rats on 8 or 24 weeks of feeding from weaning on a control (10% Kcal fat) or high-fat (HF; 60%) diet. A PCR array of ECM genes was performed with cDNA from adventitia and PVAT after 8 and 24 weeks. A gene regulatory network of the differentially expressed genes (DEGs) (HF 2-fold > con) was created using Cytoscape. RESULTS: After 8 weeks, 29 adventitia but 0 PVAT DEGs were found. By contrast, at 24 weeks, PVAT possessed 47 DEGs while adventitia had 3. Top DEGs at 8 weeks in adventitia were thrombospondin 1 and collagen 8a1. At 24 weeks, thrombospondin 1 was also a top DEG in PVAT. The transcription factor Adarb1 was identified as a regulator of DEGs in 8-week adventitia and 24-week PVAT. CONCLUSION: These data support that PVAT responds biologically once blood pressure is elevated.


Asunto(s)
Dieta Alta en Grasa , Hipertensión , Ratas , Animales , Masculino , Trombospondina 1 , Presión Sanguínea , Ratas Endogámicas Dahl , Tejido Adiposo , Hipertensión/genética
2.
Pharmacol Res ; 199: 107047, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157998

RESUMEN

The 5-hydroxytryptamine 7 receptor (5-HT7) is necessary for 5-HT to cause a concentration-dependent vascular relaxation and hypotension. 5-HT7 is recognized as having biased signaling, transduced through either Gs or ß -arrestin. It is unknown whether 5-HT7 signals in a biased manner to cause vasorelaxation/hypotension. We used the recently described ß-arrestin selective 5-HT7 receptor agonist serodolin to test the hypothesis that 5-HT7 activation does not cause vascular relaxation or hypotension via the ß -arrestin pathway. Isolated abdominal aorta (no functional 5-HT7) and vena cava (functional 5-HT7) from male Sprague Dawley rats were used in isometric contractility studies. Serodolin (1 nM - 10 µM) did not change baseline tone of isolated tissues and did not relax the endothelin-1 (ET-1)-contracted vena cava or aorta. In the aorta, serodolin acted as a 5-HT2A receptor antagonist, evidenced by a rightward shift in 5-HT-induced concentration response curve [pEC50 5-HT [M]: Veh = 5.2 +/- 0.15; Ser (100 nM) = 4.49 +/- 0.08; p < 0.05]. In the vena cava, serodolin acted as a 5-HT7 receptor antagonist, shifting the concentration response curve to 5-HT left and upward (%10 µM NE contraction; Veh = 3.2 +/- 1.7; Ser (10 nM) = 58 +/- 11; p < 0.05) and blocking relaxation of pre-contracted tissue to the 5-HT1A/7 agonist 5-carboxamidotryptamine. In anesthetized rats, 5-HT or serodolin was infused at 5, 25 and 75 µg/kg/min, iv. Though 5-HT caused concentration-dependent depressor responses, serodolin caused an insignificant small depressor responses at all three infusion rates. With the final dose of serodolin on board, 5-HT was unable to reduce blood pressure. Collectively the data indicate that serodolin functions as a 5-HT7 antagonist with additional 5-HT2A blocking properties. 5-HT7 activation does not cause vascular relaxation or hypotension via the ß -arrestin pathway.


Asunto(s)
Hipotensión , Serotonina , Ratas , Animales , Masculino , Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , beta-Arrestinas , Ratas Sprague-Dawley
3.
Am J Physiol Heart Circ Physiol ; 325(1): H172-H186, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294893

RESUMEN

The adipokine chemerin may support blood pressure, evidenced by a fall in mean arterial pressure after whole body antisense oligonucleotide (ASO)-mediated knockdown of chemerin protein in rat models of normal and elevated blood pressure. Although the liver is the greatest contributor of circulating chemerin, liver-specific ASOs that abolished hepatic-derived chemerin did not change blood pressure. Thus, other sites must produce the chemerin that supports blood pressure. We hypothesize that the vasculature is a source of chemerin independent of the liver that supports arterial tone. RNAScope, PCR, Western blot analyses, ASOs, isometric contractility, and radiotelemetry were used in the Dahl salt-sensitive (SS) rat (male and female) on a normal diet. Retinoic acid receptor responder 2 (Rarres2) mRNA was detected in the smooth muscle, adventitia, and perivascular adipose tissue of the thoracic aorta. Chemerin protein was detected immunohistochemically in the endothelium, smooth muscle cells, adventitia, and perivascular adipose tissue. Chemerin colocalized with the vascular smooth muscle marker α-actin and the adipocyte marker perilipin. Importantly, chemerin protein in the thoracic aorta was not reduced when liver-derived chemerin was abolished by a liver-specific ASO against chemerin. Chemerin protein was similarly absent in arteries from a newly created global chemerin knockout in Dahl SS rats. Inhibition of the receptor Chemerin1 by the receptor antagonist CCX832 resulted in the loss of vascular tone that supports potential contributions of chemerin by both perivascular adipose tissue and the media. These data suggest that vessel-derived chemerin may support vascular tone locally through constitutive activation of Chemerin1. This posits chemerin as a potential therapeutic target in blood pressure regulation.NEW & NOTEWORTHY Vascular tunicas synthesizing chemerin is a new finding. Vascular chemerin is independent of hepatic-derived chemerin. Vasculature from both males and females have resident chemerin. Chemerin1 receptor activity supports vascular tone.


Asunto(s)
Vasos Sanguíneos , Quimiocinas , Animales , Ratas , Técnicas de Silenciamiento del Gen , Hígado/metabolismo , Aorta/metabolismo , Quimiocinas/análisis , Quimiocinas/metabolismo , Músculo Liso Vascular/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología
4.
Microcirculation ; 30(5-6): e12808, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37204759

RESUMEN

OBJECTIVE: Serotonin (5-HT) infusion in vivo causes hypotension and a fall in total peripheral resistance. However, the vascular segment and the receptors that mediate this response remain in question. We hypothesized that 5-HT7 receptors mediate arteriolar dilation to 5-HT in skeletal muscle microcirculation. METHODS: Cremaster muscles of isoflurane-anesthetized male Sprague-Dawley rats were prepared for in vivo microscopy of third- and fourth-order arterioles and superfused with physiological salt solution at 34°C. Quantitative real-time PCR (RT-PCR) was applied to pooled samples of first- to third-order cremaster arterioles (2-4 rats/sample) to evaluate 5-HT7 receptor expression. RESULTS: Topical 5-HT (1-10 nmols) or the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (10-30 nM), dilated third- and fourth-order arterioles, responses that were abolished by 1 µM SB269970, a selective 5-HT7 receptor antagonist. In contrast, dilation induced by the muscarinic agonist, methacholine (100 nmols) was not inhibited by SB269970. Serotonin (10 nmols) failed to dilate cremaster arterioles in 5-HT7 receptor knockout rats whereas arterioles in wild-type litter mates dilated to 1 nmol 5-HT, a response blocked by 1 µM SB269970. Quantitative RT-PCR revealed that cremaster arterioles expressed mRNA for 5-HT7 receptors. CONCLUSIONS: 5-HT7 receptors mediate dilation of small arterioles in skeletal muscle and likely contribute to 5-HT-induced hypotension, in vivo.


Asunto(s)
Serotonina , Vasodilatación , Ratas , Masculino , Animales , Serotonina/farmacología , Arteriolas/fisiología , Ratas Sprague-Dawley , Dilatación , Músculo Esquelético/irrigación sanguínea , Músculos Abdominales
5.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R411-R422, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519252

RESUMEN

Renal denervation (RDN) is a potential therapy for drug-resistant hypertension. However, whether its effects are mediated by ablation of efferent or afferent renal nerves is not clear. Previous studies have implicated that renal inflammation and the sympathetic nervous system are driven by the activation of afferent and efferent renal nerves. RDN attenuated the renal inflammation and sympathetic activity in some animal models of hypertension. In the 2 kidney,1 clip (2K1C) model of renovascular hypertension, RDN also decreased sympathetic activity; however, mechanisms underlying renal and central inflammation are still unclear. We tested the hypothesis that the mechanisms by which total RDN (TRDN; efferent + afferent) and afferent-specific RDN (ARDN) reduce arterial pressure in 2K1C rats are the same. Male Sprague-Dawley rats were instrumented with telemeters to measure mean arterial pressure (MAP), and after 7 days, a clip was placed on the left renal artery. Rats underwent TRDN, ARDN, or sham surgery of the clipped kidney and MAP was measured for 6 wk. Weekly measurements of water intake (WI), urine output (UO), and urinary copeptin were conducted, and urine was analyzed for cytokines/chemokines. Neurogenic pressor activity (NPA) was assessed at the end of the protocol calculated by the depressor response after intraperitoneal injection of hexamethonium. Rats were euthanized and the hypothalamus and kidneys removed for measurement of cytokine content. MAP, NPA, WI, and urinary copeptin were significantly increased in 2K1C-sham rats, and these responses were abolished by both TRDN and ARDN. 2K1C-sham rats presented with renal and hypothalamic inflammation and these responses were largely mitigated by TRDN and ARDN. We conclude that RDN attenuates 2K1C hypertension primarily by ablation of afferent renal nerves which disrupts bidirectional renal neural-immune pathways.NEW & NOTEWORTHY Hypertension resulting from reduced perfusion of the kidney is dependent on renal sensory nerves, which are linked to inflammation in the kidney and hypothalamus. Afferent renal nerves are required for chronic increases in both water intake and vasopressin release observed following renal artery stenosis. Findings from this study suggest an important role of renal sensory nerves that has previously been underestimated in the pathogenesis of 2K1C hypertension.


Asunto(s)
Hipertensión Renovascular , Hipertensión , Nefritis , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Riñón , Sistema Nervioso Simpático , Hipotálamo , Inflamación , Presión Sanguínea/fisiología
6.
Am J Physiol Heart Circ Physiol ; 321(1): H15-H28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929898

RESUMEN

Vascular dysfunctions are observed in the arteries from hypertensive subjects. The establishment of the Dahl salt-sensitive (SS) male and female rat models to develop a reproducible hypertension with high-fat (HF) diet feeding from weaning allows addressing the question of whether HF diet-associated hypertension results in vascular dysfunction similar to that of essential hypertension in both sexes. We hypothesized that dysfunction of three distinct vascular layers, i.e., endothelial, smooth muscle, and perivascular adipose tissue (PVAT), would be present in the aorta from HF diet-fed versus control diet-fed male and female rats. Dahl SS rats were fed a control (10% kcal of fat) or HF (60%) diet from weaning for 24 wk. Male and female Dahl SS rats became equally hypertensive when placed on a HF diet. For male and female rats, the thoracic aorta exhibited medial hypertrophy in HF diet-induced hypertension versus control, but neither displayed a hyperresponsive contraction to the α-adrenergic agonist phenylephrine nor an endothelial cell dysfunction as measured by acetylcholine-induced relaxation. A beneficial PVAT function, support of stress relaxation, was reduced in the male versus female rats fed a HF diet. PVAT in the aorta of males but not in females retained the anticontractile activity. We conclude that this HF model does not display the same vascular dysfunctions observed in essential hypertension. Moreover, both male and female show significantly different vascular dysfunctions in this HF feeding model.NEW & NOTEWORTHY Although the aorta exhibits medial hypertrophy in response to HF diet-induced hypertension, it did not exhibit hyperresponsive contraction to an α-adrenergic agonist nor endothelial cell dysfunction; this was true for both sexes. Unlike other hypertension models, PVAT around aorta from (male) rats on the HF diet retained significant anticontractile activity. PVAT around aorta of the male on a HF diet was modestly more fibrotic and lost the ability to assist in arterial stress relaxation.


Asunto(s)
Tejido Adiposo/metabolismo , Aorta Torácica/fisiología , Dieta Alta en Grasa , Vasodilatación/fisiología , Acetilcolina/farmacología , Tejido Adiposo/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Femenino , Masculino , Ratas , Ratas Endogámicas Dahl , Factores Sexuales , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos
7.
Pharmacol Res ; 163: 105273, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197599

RESUMEN

Trimethylamine (TMA), formed by intestinal microbiota, and its Flavin-Monooxygenase 3 (FMO3) product Trimethylamine-N-Oxide (TMAO), are potential modulators of host cardiometabolic phenotypes. High circulating levels of TMAO are associated with increased risk for cardiovascular diseases. We hypothesized that TMA/TMAO could directly change the vascular tone. Perivascular adipose tissue (PVAT) helps to regulate vascular homeostasis and may also possess FMO3. Thoracic aorta with(+) or without(-) PVAT, also + or - the endothelium (E), of male Sprague Dawley rats were isolated for measurement of isometric tone in response to TMA/TMAO (1nM-0.5 M). Immunohistochemistry (IHC) studies were done to identify the presence of FMO3. TMA and TMAO elicited concentration-dependent arterial contraction. However, at a maximally achievable concentration (0.2 M), contraction stimulated by TMA was of a greater magnitude (141.5 ± 16% of maximum phenylephrine contraction) than that elicited by TMAO (19.1 ± 4.03%) with PVAT and endothelium intact. When PVAT was preserved, TMAO-induced contraction was extensively reduced the presence (19.1 ± 4.03%) versus absence of E (147.2 ± 20.5%), indicating that the endothelium plays a protective role against TMAO-induced contraction. FMO3 enzyme was present in aortic PVAT, but the FMO3 inhibitor methimazole did not affect contraction stimulated by TMA in aorta + PVAT. However, the l-type calcium channel blocker nifedipine reduced TMA-induced contraction by ∼50% compared to the vehicle. Though a high concentration of these compounds was needed to achieve contraction, the findings that TMA-induced contraction was independent of PVAT and E and mediated by nifedipine-sensitive calcium channels suggest metabolite-induced contraction may be physiologically important.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Aorta Torácica/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Metilaminas/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiología , Calcio/fisiología , Canales de Calcio Tipo L/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Oxigenasas/metabolismo , Oxigenasas/fisiología , Ratas Sprague-Dawley
8.
Am J Physiol Heart Circ Physiol ; 319(6): H1313-H1324, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33006918

RESUMEN

Perivascular adipose tissue (PVAT) modifies the contractile function of the vessel it surrounds (outside-in signaling). Little work points to the vessel actively affecting its surrounding PVAT. We hypothesized that inside-out arterial signaling to PVAT would be evidenced by the response of PVAT to changes in tangential vascular wall stress. Rats coarcted in the mid-thoracic aorta created PVAT tissues that would exemplify pressure-dependent changes (above vs. below coarctation); a sham rat was used as a control. Radiotelemetry revealed a ∼20 mmHg systolic pressure gradient across the coarctation 4 wk after surgery. Four measures (histochemical, adipocyte progenitor proliferation and differentiation, isometric tone, and bulk mRNA sequencing) were used to compare PVAT above versus below the ligature in sham and coarcted rats. Neither aortic collagen deposition in PVAT nor arterial media/radius ratio above coarctation was increased versus below segments. However, differentiated adipocytes derived from PVAT above the coarctation accumulated substantially less triglycerides versus those below; their relative proliferation rate as adipogenic precursors was not different. Functionally, the ability of PVAT to assist stress relaxation of isolated aorta was reduced in rings above versus below the coarctation. Transcriptomic analyses revealed that the coarctation resulted in more differentially expressed genes (DEGs) between PVAT above versus below when compared with sham samples from the same locations. A majority of DEGs were in PVAT below the coarctation and were enriched in neuronal/synaptic terms. These findings provide initial evidence that signaling from the vascular wall, as stimulated by a pressure change, influences the function and transcriptional profile of its PVAT.NEW & NOTEWORTHY A mid-thoracic aorta coarcted rat was created to generate a stable pressure difference above versus below the coarctation ligature. This study determined that the PVAT around the thoracic aorta exposed to a higher pressure has a significantly reduced ability to assist stress relaxation versus that below the ligature and appears to retain the ability to be anticontractile. At the same time, the PVAT around the thoracic aorta exposed to higher pressure had a reduced adipogenic potential versus that below the ligature. Transcriptomics analyses indicated that PVAT below the coarctation showed the greatest number of DEGs with an increased profile of the synaptic neurotransmitter gene network.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aorta Torácica/fisiopatología , Coartación Aórtica/fisiopatología , Presión Arterial , Mecanotransducción Celular , Transcriptoma , Adipocitos/patología , Adipogénesis , Tejido Adiposo/patología , Animales , Coartación Aórtica/genética , Coartación Aórtica/metabolismo , Coartación Aórtica/patología , Proliferación Celular , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Masculino , Ratas Sprague-Dawley
9.
Exp Physiol ; 105(12): 2025-2032, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33052620

RESUMEN

NEW FINDINGS: What is the central question of this study? What mechanisms account for the hypotension observed during chronic elevations in circulating 5-hydroxytryptamine in rats? What is the main finding and its importance? Chronic 5-hydroxytryptamine-induced hypotension requires continued activation of the 5-HT7 receptor subtype but does not require NO, an outcome that resolves previous conflicting results. Therapeutic interruption of the hypotensive actions of 5-HT under pathophysiological conditions can only be achieved through blockade of the 5-HT7 receptor. ABSTRACT: Low dose infusion of 5-hydroxytryptamine (5-HT) to rats causes both an acute and a chronic fall in arterial blood pressure. The 5-HT7 receptor subtype plays a critical part in the observed hypotension. Acute (minutes to hours) 5-HT infusion shows no depressor role for nitric oxide (NO), but 5-HT depressor responses under chronic conditions suggest that NO production may be critical. We test the hypothesis that NO contributes to the chronic, but not the acute, depressor response to 5-HT. We compared the role of NO and 5-HT7 receptors in 5-HT-induced hypotension under acute and chronic conditions in the same animal. Mean arterial pressure and heart rate were measured by radiotelemetry in conscious rats during 5 days of saline or 5-HT (25 µg kg-1  min-1 ; osmotic pump) infusion and for 2 days after infusion was stopped. To quantify the contributions of NO and the 5-HT7 receptor to 5-HT-induced hypotension, the nitric oxide synthase (NOS) inhibitor l-NAME or the selective 5-HT7 receptor antagonist SB-267790 were given at 1, 3 and 5 days of chronic infusion, and 1 day after 5-HT infusion pumps were removed. Nω -Nitro-l-arginine methyl ester (l-NAME) caused a pressor response of the same magnitude in the absence or presence of 5-HT infusion. Conversely, SB-269970 did not affect mean arterial pressure in the absence of 5-HT infusion and reversed the 5-HT-induced depressor response at each time point. Our findings demonstrate that acute and chronic 5-HT-induced hypotension does not require NOS activation but does require continued activation of the 5-HT7 receptor.


Asunto(s)
Hipotensión/inducido químicamente , Hipotensión/metabolismo , Óxido Nítrico Sintasa/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Presión Arterial/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Vasoconstrictores/farmacología
10.
Physiol Genomics ; 51(7): 302-310, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125292

RESUMEN

The fall in mean arterial pressure (MAP) after 24 h of 5-HT infusion is associated with a dilation of the portal vein (PV) and abdominal inferior vena cava (Ab IVC); all events were blocked by the selective 5-HT7 receptor antagonist SB269970. Few studies have investigated the contribution of the 5-HT7 receptor in long-term cardiovascular control, and this requires an understanding of the chronic activation of the receptor. Using the newly created 5-HT7 receptor knockout (KO) rat, we presently test the hypothesis that continuous activation of the 5-HT7 receptor by 5-HT is necessary for the chronic (1 wk) depressor response and splanchnic venodilation. We also address if the 5-HT7 receptor contributes to endogenous cardiovascular regulation. Conscious MAP (radiotelemeter), splanchnic vessel diameter (ultrasound), and cardiac function (echocardiogram) were measured in ambulatory rats during multiday 5-HT infusion (25 µg·kg-1·min-1 via minipump) and after pump removal. 5-HT infusion reduced MAP and caused splanchnic venodilation of wild-type (WT) but not KO rats at any time point. The efficacy of 5-HT-induced contraction was elevated in the isolated abdominal inferior vena cava from the KO compared with WT rats, supporting loss of a relaxant receptor. Similarly, the efficacy of 5-HT causing an acute pressor response to higher doses of 5-HT in vivo was also increased in the KO vs. WT rat. Our work supports a novel mechanism for the cardiovascular effects of 5-HT, activation of 5-HT7 receptors mediating venodilation in the splanchnic circulation, which could prove useful in the treatment of cardiovascular disease.


Asunto(s)
Animales Modificados Genéticamente , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Receptores de Serotonina/genética , Serotonina/administración & dosificación , Animales , Ecocardiografía , Femenino , Técnicas de Inactivación de Genes , Infusiones Intravenosas , Masculino , Vena Porta/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley
11.
Physiol Genomics ; 51(11): 553-561, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588871

RESUMEN

Chemerin is a contractile adipokine, produced in liver and fat, and removal of the protein by antisense oligonucleotides (ASO) lowers blood pressure in the normal Sprague Dawley rat. In humans, chemerin is positively associated with blood pressure and obesity so we hypothesized that in a model of hypertension derived from high-fat (HF) feeding, the chemerin ASO would reduce blood pressure more than a high-salt (HS) model. Male Dahl S rats were given a HF (60% kcal fat; age 3-24 wk) or HS diet (4% salt; age 20-24 wk to match age and blood pressure of HF animals). Scrambled control, whole body, or liver-specific ASOs that knock down chemerin were delivered subcutaneously once per week for 4 wk with tissue and blood collected 2 days after the last injection. Conscious blood pressure was measured 24 h/day by radiotelemetry. By the end of whole body ASO administration, blood pressure of HF animals had fallen 29 ± 2 mmHg below baseline, while blood pressure of HS-diet animals fell by only 12 ± 4 mmHg below baseline. Administration of a liver-specific ASO to HF Dahl S resulted in a 6 ± 2 mmHg fall in blood pressure below baseline. Successful knockdown of chemerin in both the whole body and liver-specific administration was confirmed by Western and PCR. These results suggest that chemerin, not derived from liver but potentially from adipose tissue, is an important driver of hypertension associated with high fat. This knowledge could lead to the development of antihypertensive treatments specifically targeted to obesity-associated hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Quimiocinas/antagonistas & inhibidores , Grasas de la Dieta/farmacología , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/antagonistas & inhibidores , Cloruro de Sodio Dietético/farmacología , Tejido Adiposo/metabolismo , Animales , Quimiocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Ratas Endogámicas Dahl
12.
FASEB J ; : fj201800479, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29906243

RESUMEN

Measures of the adipokine chemerin are elevated in multiple cardiovascular diseases, including hypertension, but little mechanistic work has been done to implicate chemerin as being causative in such diseases. The chemerin knockout (KO) rat was created to test the hypothesis that removal of chemerin would reduce pressure in the normal and hypertensive state. Western analyses confirmed loss of chemerin in the plasma and tissues of the KO vs. wild-type (WT) rats. Chemerin concentration in plasma and tissues was lower in WT females than in WT males, as determined by Western analysis. Conscious male and female KO rats had modest differences in baseline measures vs. the WT that included systolic, diastolic, mean arterial and pulse pressures, and heart rate, all measured telemetrically. The mineralocorticoid deoxycorticosterone acetate (DOCA) and salt water, combined with uninephrectomy as a hypertensive stimulus, elevated mean and systolic blood pressures of the male KO higher than the male WT. By contrast, all pressures in the female KO were lower than their WT throughout DOCA-salt treatment. These results revealed an unexpected sex difference in chemerin expression and the ability of chemerin to modify blood pressure in response to a hypertensive challenge.-Watts, S. W., Darios, E. S., Mullick, A. E., Garver, H., Saunders, T. L., Hughes, E. D., Filipiak, W. E., Zeidler, M. G., McMullen, N., Sinal, C. J., Kumar, R. K., Ferland, D. J., Fink, G. D. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension.

13.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R883-R891, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513561

RESUMEN

Recent preclinical studies show renal denervation (RDNx) may be an effective treatment for hypertension; however, the mechanism remains unknown. We have recently reported total RDNx (TRDNx) and afferent-selective RDNx (ARDNx) similarly attenuated the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Whereas TRDNx abolished renal inflammation, ARDNx had a minimal effect despite an identical antihypertensive effect. Although this study established that ARDNx attenuates the development of DOCA-salt hypertension, it is unknown whether this mechanism remains operative once hypertension is established. The current study tested the hypothesis that TRDNx and ARDNx would similarly decrease mean arterial pressure (MAP) in the DOCA-salt hypertensive rat, and only TRDNx would mitigate renal inflammation. After 21 days of DOCA-salt treatment, male Sprague-Dawley rats underwent TRDNx ( n = 16), ARDNx ( n = 16), or Sham ( n = 14) treatment and were monitored for 14 days. Compared with baseline, TRDNx and ARDNx decreased MAP similarly (TRDNx -14 ± 4 and ARDNx -15 ± 6 mmHg). After analysis of diurnal rhythm, rhythm-adjusted mean and amplitude of night/day cycle were also reduced in TRDNx and ARDNx groups compared with Sham. Notably, no change in renal inflammation, injury, or function was detected with either treatment. We conclude from these findings that: 1) RDNx mitigates established DOCA-salt hypertension; 2) the MAP responses to RDNx are primarily mediated by ablation of afferent renal nerves; and 3) renal nerves do not contribute to the maintenance of renal inflammation in DOCA-salt hypertension.


Asunto(s)
Presión Arterial , Hipertensión/fisiopatología , Riñón/inervación , Nefritis/fisiopatología , Neuronas Aferentes , Animales , Ritmo Circadiano , Desnervación , Acetato de Desoxicorticosterona , Hipertensión/inducido químicamente , Masculino , Nefritis/inducido químicamente , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/fisiopatología
14.
Am J Physiol Heart Circ Physiol ; 313(3): H676-H686, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626072

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 µg·kg-1·min-1) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure.NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT7 receptor, an in vitro observation (venorelaxation) with in vivo events (venodilation and fall in blood pressure). This supports the idea that splanchnic venodilation plays a role in blood pressure regulation.


Asunto(s)
Venas Mesentéricas/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Serotonina/farmacología , Circulación Esplácnica/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Presión Arterial/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Infusiones Intravenosas , Masculino , Venas Mesentéricas/diagnóstico por imagen , Venas Mesentéricas/metabolismo , Vena Porta/efectos de los fármacos , Vena Porta/metabolismo , Ratas Sprague-Dawley , Receptores de Serotonina/metabolismo , Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/administración & dosificación , Telemetría , Factores de Tiempo , Ultrasonografía , Vasodilatadores/administración & dosificación , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 310(3): H365-75, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637558

RESUMEN

Artery remodeling, described as a change in artery structure, may be responsible for the increased risk of cardiovascular disease with aging. Although the risk for stroke is known to increase with age, relatively young animals have been used in most stroke studies. Therefore, more information is needed on how aging alters the biomechanical properties of cerebral arteries. Posterior cerebral arteries (PCAs) and parenchymal arterioles (PAs) are important in controlling brain perfusion. We hypothesized that aged (22-24 mo old) C57bl/6 mice would have stiffer PCAs and PAs than young (3-5 mo old) mice. The biomechanical properties of the PCAs and PAs were assessed by pressure myography. Data are presented as means ± SE of young vs. old. In the PCA, older mice had increased outer (155.6 ± 3.2 vs. 169.9 ± 3.2 µm) and lumen (116.4 ± 3.6 vs. 137.1 ± 4.7 µm) diameters. Wall stress (375.6 ± 35.4 vs. 504.7 ± 60.0 dyn/cm(2)) and artery stiffness (ß-coefficient: 5.2 ± 0.3 vs. 7.6 ± 0.9) were also increased. However, wall strain (0.8 ± 0.1 vs. 0.6 ± 0.1) was reduced with age. In the PAs from old mice, wall thickness (3.9 ± 0.3 vs. 5.1 ± 0.2 µm) and area (591.1 ± 95.4 vs. 852.8 ± 100 µm(2)) were increased while stress (758.1 ± 100.0 vs. 587.2 ± 35.1 dyn/cm(2)) was reduced. Aging also increased mean arterial and pulse pressures. We conclude that age-associated remodeling occurs in large cerebral arteries and arterioles and may increase the risk of cerebrovascular disease.


Asunto(s)
Envejecimiento/fisiología , Presión Arterial/fisiología , Cerebro/irrigación sanguínea , Arteria Cerebral Posterior/fisiopatología , Rigidez Vascular/fisiología , Envejecimiento/patología , Animales , Arteriolas/patología , Arteriolas/fisiopatología , Fenómenos Biomecánicos , Presión Sanguínea/fisiología , Ratones , Ratones Endogámicos C57BL , Miografía , Tamaño de los Órganos , Arteria Cerebral Posterior/patología , Estrés Mecánico
16.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R232-42, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27225954

RESUMEN

Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.


Asunto(s)
Angiotensina II , Encéfalo/metabolismo , Hipertensión/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/metabolismo , Cloruro de Sodio Dietético , Animales , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Masculino , Acoplamiento Neurovascular , Ratas , Ratas Sprague-Dawley , Transducción de Señal
17.
Am J Physiol Regul Integr Comp Physiol ; 310(3): R262-7, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26661098

RESUMEN

Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼ 140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼ 170 mmHg. RDNX reduced MAP ∼ 10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves.


Asunto(s)
Presión Arterial , Desnervación Autonómica/métodos , Hipertensión/fisiopatología , Hipertensión/cirugía , Riñón/inervación , Vías Aferentes/fisiopatología , Vías Aferentes/cirugía , Animales , Modelos Animales de Enfermedad , Vías Eferentes/fisiopatología , Vías Eferentes/cirugía , Hipertensión/etiología , Masculino , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Factores de Tiempo
18.
J Physiol ; 593(14): 3065-75, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26173827

RESUMEN

Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called 'renal function curve'. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII-salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the 'neurogenic model'. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII-salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the 'renal function curve', are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G-C model, but may also result from neurogenic dysfunction.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Hipertensión/fisiopatología , Modelos Neurológicos , Equilibrio Hidroelectrolítico , Animales , Humanos
19.
Am J Physiol Regul Integr Comp Physiol ; 308(2): R112-22, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25411365

RESUMEN

Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats.


Asunto(s)
Capsaicina/farmacología , Desnervación , Riñón/efectos de los fármacos , Riñón/inervación , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiopatología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Desnervación/métodos , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Riñón/metabolismo , Masculino , Ratas Sprague-Dawley , Cloruro de Sodio Dietético
20.
Am J Physiol Heart Circ Physiol ; 307(5): H670-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24993045

RESUMEN

Angiotensin II (ANG II)-induced hypertension is a commonly studied model of experimental hypertension, particularly in rodents, and is often generated by subcutaneous delivery of ANG II using Alzet osmotic minipumps chronically implanted under the skin. We have observed that, in a subset of animals subjected to this protocol, mean arterial pressure (MAP) begins to decline gradually starting the second week of ANG II infusion, resulting in a blunting of the slow pressor response and reduced final MAP. We hypothesized that this variability in the slow pressor response to ANG II was mainly due to factors unique to Alzet pumps. To test this, we compared the pressure profile and changes in plasma ANG II levels during subcutaneous ANG II administration (150 ng·kg(-1)·min(-1)) using either Alzet minipumps, iPrecio implantable pumps, or a Harvard external infusion pump. At the end of 14 days of ANG II, MAP was highest in the iPrecio group (156 ± 3 mmHg) followed by Harvard (140 ± 3 mmHg) and Alzet (122 ± 3 mmHg) groups. The rate of the slow pressor response, measured as daily increases in pressure averaged over days 2-14 of ANG II, was similar between iPrecio and Harvard groups (2.7 ± 0.4 and 2.2 ± 0.4 mmHg/day) but was significantly blunted in the Alzet group (0.4 ± 0.4 mmHg/day) due to a gradual decline in MAP in a subset of rats. We also found differences in the temporal profile of plasma ANG II between infusion groups. We conclude that the gradual decline in MAP observed in a subset of rats during ANG II infusion using Alzet pumps is mainly due to pump-dependent factors when applied in this particular context.


Asunto(s)
Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Infusiones Subcutáneas/métodos , Angiotensina II/administración & dosificación , Angiotensina II/sangre , Animales , Bombas de Infusión , Infusiones Subcutáneas/instrumentación , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA