Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Immunol ; 18(11): 1197-1206, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28920951

RESUMEN

Activated natural killer (NK) cells engage in a robust metabolic response that is required for normal effector function. Using genetic, pharmacological and metabolic analyses, we demonstrated an essential role for Srebp transcription factors in cytokine-induced metabolic reprogramming of NK cells that was independent of their conventional role in the control of lipid synthesis. Srebp was required for elevated glycolysis and oxidative phosphorylation and promoted a distinct metabolic pathway configuration in which glucose was metabolized to cytosolic citrate via the citrate-malate shuttle. Preventing the activation of Srebp or direct inhibition of the citrate-malate shuttle inhibited production of interferon-γ and NK cell cytotoxicity. Thus, Srebp controls glucose metabolism in NK cells, and this Srebp-dependent regulation is critical for NK cell effector function.


Asunto(s)
Glucosa/metabolismo , Glucólisis , Células Asesinas Naturales/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Proliferación Celular , Citocinas/metabolismo , Citometría de Flujo , Humanos , Immunoblotting , Células Asesinas Naturales/inmunología , Lípidos/biosíntesis , Fosforilación Oxidativa , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
3.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619286

RESUMEN

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Asunto(s)
Antígenos CD , Citocinas , Hierro , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa , Receptores de Transferrina , Humanos , Células T Invariantes Asociadas a Mucosa/inmunología , Hierro/metabolismo , Receptores de Transferrina/metabolismo , Receptores de Transferrina/inmunología , Antígenos CD/metabolismo , Antígenos CD/inmunología , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Proliferación Celular , Células Cultivadas , Adenosina Trifosfato/metabolismo
4.
Eur J Immunol ; 51(1): 91-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946110

RESUMEN

Cellular metabolism is dynamically regulated in NK cells and strongly influences their responses. Metabolic dysfunction is linked to defective NK cell responses in diseases such as obesity and cancer. The transcription factors, sterol regulatory element binding protein (SREBP) and cMyc, are crucial for controlling NK cell metabolic and functional responses, though the mechanisms involved are not fully understood. This study reveals a new role for SREBP in NK cells in supporting de novo polyamine synthesis through facilitating elevated cMyc expression. Polyamines have diverse roles and their de novo synthesis is required for NK cell glycolytic and oxidative metabolism and to support optimal NK cell effector functions. When NK cells with impaired SREBP activity were supplemented with exogenous polyamines, NK cell metabolic defects were not rescued but these NK cells displayed significant improvement in some effector functions. One role for polyamines is in the control of protein translation where spermidine supports the posttranslational hypusination of translation factor eIF5a. Pharmacological inhibition of hypusination also impacts upon NK cell metabolism and effector function. Considering recent evidence that cholesterol-rich tumor microenvironments inhibit SREBP activation and drive lymphocyte dysfunction, this study provides key mechanistic insight into this tumor-evasion strategy.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Poliaminas/metabolismo , Animales , Células Cultivadas , Femenino , Glucólisis , Células Asesinas Naturales/efectos de los fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Factores de Iniciación de Péptidos/metabolismo , Poliaminas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/deficiencia , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
5.
J Immunol ; 202(12): 3404-3411, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076528

RESUMEN

Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.


Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células T Invariantes Asociadas a Mucosa/fisiología , Obesidad/inmunología , Adulto , Células Cultivadas , Femenino , Glucólisis , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos , Masculino , Análisis de Secuencia de ARN , Transducción de Señal
6.
J Immunol ; 200(12): 3934-3941, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720425

RESUMEN

Cytokines stimulate rapid metabolic changes in human NK cells, including increases in both glycolysis and oxidative phosphorylation pathways. However, how these are subsequently regulated is not known. In this study, we demonstrate that TGF-ß can inhibit many of these metabolic changes, including oxidative phosphorylation, glycolytic capacity, and respiratory capacity. TGF-ß also inhibited cytokine-induced expression of the transferrin nutrient receptor CD71. In contrast to a recent report on murine NK cells, TGF-ß-mediated suppression of these metabolic responses did not involve the inhibition of the metabolic regulator mTORC1. Inhibition of the canonical TGF-ß signaling pathway was able to restore almost all metabolic and functional responses that were inhibited by TGF-ß. These data suggest that pharmacological inhibition of TGF-ß could provide a metabolic advantage to NK cells that is likely to result in improved functional responses. This has important implications for NK cell-based cancer immunotherapies.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación Oxidativa
7.
J Immunol ; 196(6): 2552-60, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873994

RESUMEN

Human NK cells can be classified into phenotypically and functionally distinct subsets based on levels of CD56 receptor. CD56(dim) cells are generally considered more cytotoxic, whereas the CD56(bright) cells are potent producers of IFN-γ. In this study, we define the metabolic changes that occur in peripheral blood NK cells in response to cytokine. Metabolic analysis showed that NK cells upregulate glycolysis and oxidative phosphorylation in response to either IL-2 or IL-12/15 cytokine combinations. Despite the fact that both these cytokine combinations robustly upregulated mammalian Target of Rapamycin Complex 1 in human NK cells, only the IL-2-induced metabolic changes were sensitive to mammalian Target of Rapamycin Complex 1 inhibition by rapamycin. Interestingly, we found that CD56(bright) cells were more metabolically active compared with CD56(dim) cells. They preferentially upregulated nutrient receptors and also differed substantially in terms of their glucose metabolism. CD56(bright) cells expressed high levels of the glucose uptake receptor, Glut1 (in the absence of any cytokine), and had higher rates of glucose uptake compared with CD56(dim) cells. Elevated levels of oxidative phosphorylation were required to support both cytotoxicity and IFN-γ production in all NK cells. Finally, although elevated glycolysis was not required directly for NK cell degranulation, limiting the rate of glycolysis significantly impaired IFN-γ production by the CD56(bright) subset of cells. Overall, we have defined CD56(bright) NK cells to be more metabolically active than CD56(dim) cells, which supports their production of large amounts of IFN-γ during an immune response.


Asunto(s)
Interferón gamma/biosíntesis , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Antígeno CD56/biosíntesis , Antígeno CD56/inmunología , Citometría de Flujo , Glucólisis/inmunología , Humanos
8.
J Biol Chem ; 291(1): 1-10, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26534957

RESUMEN

Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses.


Asunto(s)
Metabolismo Energético/inmunología , Inmunidad , Animales , Vías Biosintéticas , Humanos , Inflamación/metabolismo , Inflamación/patología , Longevidad
9.
Eur J Immunol ; 45(9): 2480-3, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26256443

RESUMEN

Cellular metabolism is emerging as a key determinant of T-lymphocyte differentiation and function. While this new paradigm has been primarily characterized in murine systems, research is now characterizing a role for different aspects of cellular metabolism in controlling human T-lymphocyte biology. In this issue of the European Journal of Immunology, Renner et al. [Eur. J. Immunol. 2015. 45: 2504-2516] analyze the glycolytic and mitochondrial activity of activated human CD4(+) and CD8(+) T cells, and correlate it to T-cell function. The authors show that although neither glucose deprivation nor mitochondrial restriction affects cytokine production, the glycolytic inhibitor 2-deoxyglucose severely affects T-cell function.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Desoxiglucosa/farmacología , Glucosa/deficiencia , Mitocondrias/metabolismo , Subgrupos de Linfocitos T/metabolismo , Humanos
10.
J Immunol ; 193(9): 4477-84, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25261477

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of NK cells, lymphocytes that play key roles in antiviral and antitumor immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell proinflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFN-γ, which is important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, upregulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFN-γ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Activación Enzimática , Expresión Génica , Glucólisis , Granzimas/genética , Granzimas/metabolismo , Interferón gamma/biosíntesis , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Poli I-C/farmacología
11.
Biochem Soc Trans ; 43(4): 758-62, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26551725

RESUMEN

Natural killer (NK) cells have key roles in anti-viral and anti-tumour immune responses. Recent research demonstrates that cellular metabolism is an important determinant for the function of pro-inflammatory immune cells, including activated NK cells. The mammalian target of rapamcyin (mTOR) complex 1 (mTORC1) has been identified as a key metabolic regulator that promotes glycolytic metabolism in multiple immune cell subsets. Glycolysis is integrally linked to pro-inflammatory immune responses such that activated NK cells and effector T-cell subsets are reliant on sufficient glucose availability for maximal effector function. This article will discuss the regulation of cellular metabolism in NK cells as compared with that of T lymphocytes and discuss the implications for NK cell responses to viral infection and cancer.


Asunto(s)
Células Asesinas Naturales/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Glucólisis , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias/inmunología , Linfocitos T/metabolismo , Virosis/inmunología
12.
Eur J Immunol ; 43(4): 889-96, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23310952

RESUMEN

The adenosine monophosphate-activated protein kinase (AMPK) is activated by antigen receptor signals and energy stress in T cells. In many cell types, AMPK can maintain energy homeostasis and can enforce quiescence to limit energy demands. We consequently evaluated the importance of AMPK for controlling the transition of metabolically active effector CD8 T lymphocytes to the metabolically quiescent catabolic memory T cells during the contraction phase of the immune response. We show that AMPKα1 activates rapidly in response to the metabolic stress caused by glucose deprivation of CD8 cytotoxic T lymphocytes (CTLs). Moreover, AMPKα1 restrains mammalian target of rapamycin complex 1 activity under conditions of glucose stress. AMPKα1 activity is dispensable for proliferation and differentiation of CTLs. However, AMPKα1 is required for in vivo survival of CTLs following withdrawal of immune stimulation. AMPKα1(null) T cells also show a striking defect in their ability to generate memory CD8 T-cell responses during Listeria monocytogenes infection. These results show that AMPKα1 monitors energy stress in CTLs and controls CD8 T-cell memory.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Glucosa/metabolismo , Memoria Inmunológica , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Memoria Inmunológica/genética , Ratones , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
13.
Nat Metab ; 6(4): 651-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499765

RESUMEN

Metformin, a widely used first-line treatment for type 2 diabetes (T2D), is known to reduce blood glucose levels and suppress appetite. Here we report a significant elevation of the appetite-suppressing metabolite N-lactoyl phenylalanine (Lac-Phe) in the blood of individuals treated with metformin across seven observational and interventional studies. Furthermore, Lac-Phe levels were found to rise in response to acute metformin administration and post-prandially in patients with T2D or in metabolically healthy volunteers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Fenilalanina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Fenilalanina/sangre , Fenilalanina/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Masculino , Femenino , Glucemia/metabolismo , Depresores del Apetito/uso terapéutico , Depresores del Apetito/farmacología , Apetito/efectos de los fármacos , Adulto , Persona de Mediana Edad , Periodo Posprandial
14.
Biochem Soc Trans ; 41(2): 681-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23514176

RESUMEN

Given that inflammatory T-cells have a highly glycolytic metabolism, whereas regulatory T-cells rely more on oxidative glucose metabolism, there is growing interest in understanding how T-cell metabolism relates to T-cell function. The mTORC1 (mammalian target of rapamycin complex 1) has a crucial role to determine the balance between effector and regulatory T-cell differentiation, but is also described as a key regulator of metabolism in non-immune cell systems. The present review explores the relationship between these diverse functions of mTORC1 with regard to T-cell function. In many cell systems, mTORC1 couples PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B), also known as Akt, with the control of glucose uptake and glycolysis. However, this is not the case in activated CD8+ CTLs (cytotoxic T-lymphocytes) where PI3K/PKB signalling is dispensable for the elevated levels of glycolysis that is characteristic of activated T-cells. Nevertheless, mTORC1 is still essential for glycolytic metabolism in CD8+ T-cells, and this reflects the fact that mTORC1 does not lie downstream of PI3K/PKB signalling in CD8+ T-cells, as is the case in many other cell systems. mTORC1 regulates glucose metabolism in CTLs through regulating the expression of the transcription factor HIF1α (hypoxia-inducible factor 1α). Strikingly, HIF1α functions to couple mTORC1 with a diverse transcriptional programme that extends beyond the control of glucose metabolism to the regulation of multiple key T-cell functions. The present review discusses the idea that mTORC1/HIF1α signalling integrates the control of T-cell metabolism and T-cell function.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Glucosa/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Linfocitos T CD8-positivos/enzimología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina
15.
Cell Rep ; 42(8): 112828, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37478011

RESUMEN

System-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell. In this manner, the bona fide active uptake of glutamine via SLC1A5/ASCT2 could be quantified. We used this assay to interrogate the transport capacity of complex immune subpopulations, both in vitro and in vivo. Taken together, our findings provide an easy sensitive single-cell assay to assess which cells support their function via SLC1A5-mediated uptake. This is a significant addition to the single-cell metabolic toolbox required to decode the metabolic landscape of complex immune microenvironments.


Asunto(s)
Aminoácidos , Glutamina , Glutamina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transporte Biológico , Aminoácidos/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
16.
Front Immunol ; 14: 1296355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094304

RESUMEN

Natural killer (NK) cells are cytotoxic innate immune cells, able to recognize and eliminate virus-infected as well as cancer cells. Metabolic reprogramming is crucial for their activity as they have enhanced energy and nutritional demands for their functions during an infection. Fatty acids (FAs) represent an important source of cellular energy and are essential for proliferation of immune cells. However, the precise role of FAs for NK cells activity in retrovirus infection was unknown. Here we show that activated NK cells increase the expression of the FA uptake receptor CD36 and subsequently the uptake of FAs upon acute virus infection. We found an enhanced flexibility of NK cells to utilize FAs as source of energy compare to naïve NK cells. NK cells that were able to generate energy from FAs showed an augmented target cell killing and increased expression of cytotoxic parameters. However, NK cells that were unable to generate energy from FAs exhibited a severely decreased migratory capacity. Our results demonstrate that NK cells require FAs in order to fight acute virus infection. Susceptibility to severe virus infections as it is shown for people with malnutrition may be augmented by defects in the FA processing machinery, which might be a target to therapeutically boost NK cell functions in the future.


Asunto(s)
Infecciones por Retroviridae , Retroviridae , Humanos , Ácidos Grasos , Células Asesinas Naturales
17.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37230079

RESUMEN

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Autoinmunidad , Linfocitos T , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Hipoglucemiantes/farmacología
18.
J Immunol ; 185(10): 5973-82, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20944007

RESUMEN

This study uses two independent genetic strategies to explore the requirement for phosphoinositide-dependent kinase-1 (PDK1) in the development of mature T cell populations from CD4/CD8 double-positive thymocytes. The data show that CD4/CD8 double-positive thymocytes that do not express PDK1 or express a catalytically inactive PDK1 mutant fail to produce mature invariant Vα14 NKT cells but can differentiate to conventional CD4, CD8, or regulatory T cell subsets in the thymus. The PDK1 requirement for Vα14 NKT cell development reflects that these cells require the PDK1 substrate protein kinase B to meet the metabolic demands for proliferative expansion in response to IL-15 or AgR stimulation. There is also constitutive PDK1 signaling in conventional α/ß T cells that is not required for lineage commitment of these cells but fine-tunes the expression of coreceptors and adhesion molecules. Also, although PDK1 is dispensable for thymic development of conventional α/ß T cells, peripheral cells are reduced substantially. This reflects a PDK1 requirement for lymphopenia-induced proliferation, a process necessary for initial population of the peripheral T cell niche in neonatal mice. PDK1 is thus indispensable for T cell developmental programs, but the timing of the PDK1 requirement is unique to different T cell subpopulations.


Asunto(s)
Diferenciación Celular/inmunología , Células T Asesinas Naturales/citología , Proteínas Serina-Treonina Quinasas/inmunología , Subgrupos de Linfocitos T/citología , Linfocitos T/citología , Traslado Adoptivo , Animales , Western Blotting , Diferenciación Celular/genética , Separación Celular , Citometría de Flujo , Técnicas de Sustitución del Gen , Ratones , Ratones Mutantes , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
19.
Nat Commun ; 13(1): 7217, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470865

RESUMEN

Dendritic cells play a key role in processing and presenting antigens to naïve T cells to prime adaptive immunity. Circadian rhythms are known to regulate many aspects of immunity; however, the role of circadian rhythms in dendritic cell function is still unclear. Here, we show greater T cell responses when mice are immunised in the middle of their rest versus their active phase. We find a circadian rhythm in antigen processing that correlates with rhythms in both mitochondrial morphology and metabolism, dependent on the molecular clock gene, Bmal1. Using Mdivi-1, a compound that promotes mitochondrial fusion, we are able to rescue the circadian deficit in antigen processing and mechanistically link mitochondrial morphology and antigen processing. Furthermore, we find that circadian changes in mitochondrial Ca2+ are central to the circadian regulation of antigen processing. Our results indicate that rhythmic changes in mitochondrial calcium, which are associated with changes in mitochondrial morphology, regulate antigen processing.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Presentación de Antígeno , Linfocitos T , Ritmo Circadiano/fisiología , Antígenos , Vacunación , Células Dendríticas , Proteínas CLOCK/genética , Factores de Transcripción ARNTL/genética
20.
Stem Cell Res Ther ; 12(1): 320, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090499

RESUMEN

Immunotherapy has ushered in an exciting new era for cancer treatment. The recent discovery and success of immune checkpoint blockade and chimeric antigen receptor (CAR) T cell adoptive cell transfer has raised interest in using other immune cells, including Natural Killer (NK) cells, which might overcome some limitations with CAR T cell therapy. In this review article, we discuss the evidence that cellular metabolism is crucial for NK cell effector function. Additionally, potential strategies to optimise the metabolism of therapeutic NK cells for improved function within the metabolically adverse tumour microenvironment will be explored.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA