Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JAMIA Open ; 4(3): ooab070, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34423261

RESUMEN

OBJECTIVE: With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these issues is to use the rule-based gazetteer developed at our institution. MATERIALS AND METHODS: Performance, resource utilization, and runtime of the rule-based gazetteer were compared with five annotation systems: BioMedICUS, cTAKES, MetaMap, CLAMP, and MedTagger. RESULTS: This rule-based gazetteer was the fastest, had a low resource footprint, and similar performance for weighted microaverage and macroaverage measures of precision, recall, and f1-score compared to other annotation systems. DISCUSSION: Opportunities to increase its performance include fine-tuning lexical rules for symptom identification. Additionally, it could run on multiple compute nodes for faster runtime. CONCLUSION: This rule-based gazetteer overcame key technical limitations facilitating real-time symptomatology identification for COVID-19 and integration of unstructured data elements into our CDS. It is ideal for large-scale deployment across a wide variety of healthcare settings for surveillance of acute COVID-19 symptoms for integration into prognostic modeling. Such a system is currently being leveraged for monitoring of postacute sequelae of COVID-19 (PASC) progression in COVID-19 survivors. This study conducted the first in-depth analysis and developed a rule-based gazetteer for COVID-19 symptom extraction with the following key features: low processor and memory utilization, faster runtime, and similar weighted microaverage and macroaverage measures for precision, recall, and f1-score compared to industry-standard annotation systems.

2.
Stud Health Technol Inform ; 264: 1586-1587, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438244

RESUMEN

Natural language processing (NLP) methods would improve outcomes in the area of prehospital Emergency Medical Services (EMS) data collection and abstraction. This study evaluated off-the-shelf solutions for automating labelling of clinically relevant data from EMS reports. A qualitative approach for choosing the best possible ensemble of pretrained NLP systems was developed and validated along with a feature using word embeddings to test phrase synonymy. The ensemble showed increased performance over individual systems.


Asunto(s)
Servicios Médicos de Urgencia , Procesamiento de Lenguaje Natural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA