Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 192(1): 137-145, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022753

RESUMEN

Few effective therapies exist for acute myeloid leukaemia (AML), in part due to the molecular heterogeneity of this disease. We sought to identify genes crucial to deregulated AML signal transduction pathways which, if inhibited, could effectively eradicate leukaemia stem cells. Due to difficulties in screening primary cells, most previous studies have performed next-generation sequencing (NGS) library knockdown screens in cell lines. Using carefully considered methods including evaluation at multiple timepoints to ensure equitable gene knockdown, we employed a large NGS short hairpin RNA (shRNA) knockdown screen of nearly 5 000 genes in primary AML cells from six patients to identify genes that are crucial for leukaemic survival. Across various levels of stringency, genome-wide bioinformatic analysis identified a gene in the NOX family, NOX1, to have the most consistent knockdown effectiveness in primary cells (P = 5∙39 × 10-5 , Bonferroni-adjusted), impacting leukaemia cell survival as the top-ranked gene for two of the six AML patients and also showing high effectiveness in three of the other four patients. Further investigation of this pathway highlighted NOX2 as the member of the NOX family with clear knockdown efficacy. We conclude that genes in the NOX family are enticing candidates for therapeutic development in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Descubrimiento de Drogas , Regulación Leucémica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Terapia Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/terapia , Terapia Molecular Dirigida , NADPH Oxidasa 2/genética
2.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638347

RESUMEN

As the first FDA-approved tyrosine kinase inhibitor for treatment of patients with myelofibrosis (MF), ruxolitinib improves clinical symptoms but does not lead to eradication of the disease or significant reduction of the mutated allele burden. The resistance of MF clones against the suppressive action of ruxolitinib may be due to intrinsic or extrinsic mechanisms leading to activity of additional pro-survival genes or signalling pathways that function independently of JAK2/STAT5. To identify alternative therapeutic targets, we applied a pooled-shRNA library targeting ~5000 genes to a JAK2V617F-positive cell line under a variety of conditions, including absence or presence of ruxolitinib and in the presence of a bone marrow microenvironment-like culture medium. We identified several proteasomal gene family members as essential to HEL cell survival. The importance of these genes was validated in MF cells using the proteasomal inhibitor carfilzomib, which also enhanced lethality in combination with ruxolitinib. We also showed that proteasome gene expression is reduced by ruxolitinib in MF CD34+ cells and that additional targeting of proteasomal activity by carfilzomib enhances the inhibitory action of ruxolitinib in vitro. Hence, this study suggests a potential role for proteasome inhibitors in combination with ruxolitinib for management of MF patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA