Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Radiol Prot ; 41(4)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33827064

RESUMEN

The 2013/59/Euratom Directive reduced the occupational exposure limits for the lens. Since it has become crucial to estimate the dose absorbed by the lens, we have studied the individual variability of exposed workers' ocular conformations with respect to the data estimated from their personal dosimetry. The anterior eye conformations of 45 exposed workers were acquired using Scheimpflug imaging and classified according to their sight conditions (emmetropia, myopia or hypermetropia). Three eye models were computed, with two lens reconstructions, and implemented in an interventional radiology scenario using Monte Carlo code. The models were dosimetrically analysed by simulating setup A, a theoretical monoenergetic and isotropic photon source (10-150 keV) and setup B, a more realistic interventional setting with an angiographic x-ray unit (50, 75, 100 kV peak). Scheimpflug imaging provided an average anterior chamber depth of (6.4 ± 0.5) mm and a lens depth of (3.9 ± 0.3) mm, together with a reconstructed equatorial lens length of (7.1-10.1) mm. Using these data for model reconstruction, dose coefficients (DCs) were simulated for all ocular structures. Regardless of the eye model used, the DCs showed a similar trend with radiation energy, which highlighted that for the same energy and setup, no significant dependence on ocular morphology and workers' visual conditions was observed. The maximum difference obtained did not exceed 1% for all eye models or structures analysed. Therefore, the individual variabilities of worker ocular anatomy do not require any additional correction, compared to the personal dosimetry data measured with a dedicated lens dosimeter. To estimate the dose absorbed by the other eye structures, it is, instead, essential to know the spectrum of the source that has generated the irradiation, since there are differences between monoenergetic sources and more realistic angiographic units.


Asunto(s)
Cristalino , Exposición Profesional , Humanos , Método de Montecarlo , Exposición Profesional/análisis , Dosis de Radiación , Dosímetros de Radiación , Radiología Intervencionista
2.
Eur J Nucl Med Mol Imaging ; 45(1): 102-109, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28825125

RESUMEN

PURPOSE: The aim of the present study was to evaluate the added diagnostic value of respiratory-gated 4D18F-FDG PET/CT in liver lesion detection and characterization in a European multicenter retrospective study. METHODS: Fifty-six oncological patients (29 males and 27 females, mean age, 61.2 ± 11.2 years) from five European centers, submitted to standard 3D-PET/CT and liver 4D-PET/CT were retrospectively evaluated. Based on visual analysis, liver PET/CT findings were scored as positive, negative, or equivocal both in 3D and 4D PET/CT. The impact of 4D-PET/CT on the confidence in classifying liver lesions was assessed. PET/CT findings were compared to histology and clinical follow-up as standard reference and diagnostic accuracy was calculated for both techniques. At semi-quantitative analysis, SUVmax was calculated for each detected lesion in 3D and 4D-PET/CT. RESULTS: Overall, 72 liver lesions were considered for the analysis. Based on visual analysis in 3D-PET/CT, 32/72 (44.4%) lesions were considered positive, 21/72 (29.2%) negative, and 19/72 (26.4%) equivocal, while in 4D-PET/CT 48/72 (66.7%) lesions were defined positive, 23/72 (31.9%) negative, and 1/72 (1.4%) equivocal. 4D-PET/CT findings increased the confidence in lesion definition in 37/72 lesions (51.4%). Considering 3D equivocal lesions as positive, sensitivity, specificity, and accuracy were 88.9, 70.0, and 83.1%, respectively, while the same figures were 67.7, 90.0, and 73.8% if 3D equivocal findings were included as negative. 4D-PET/CT sensitivity, specificity, and accuracy were 97.8, 90.0, and 95.4%, respectively, considering equivocal lesions as positive and 95.6, 90.0, and 93.8% considering equivocal lesions as negative. The SUVmax of the liver lesions in 4D-PET (mean ± SD, 6.9 ± 3.2) was significantly higher (p < 0.001) than SUVmax in 3D-PET (mean ± SD, 5.2 ± 2.3). CONCLUSIONS: Respiratory-gated PET/CT technique is a valuable clinical tool in diagnosing liver lesions, reducing 3D undetermined findings, improving diagnostic accuracy, and confidence in reporting. 4D-PET/CT also improved the quantification of SUVmax of liver lesions.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Anciano , Femenino , Fluorodesoxiglucosa F18 , Tomografía Computarizada Cuatridimensional/normas , Humanos , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Radiofármacos , Técnicas de Imagen Sincronizada Respiratorias/normas
3.
Q J Nucl Med Mol Imaging ; 61(2): 216-231, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26576734

RESUMEN

BACKGROUND: The purpose of this work is to implement a radiobiological model to compare different treatment schedules for Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu and 90Y. The principal radiobiological quantities were studied as a function of radionuclides, fractionation schemes, activity distribution in kidneys and tumor radiosensitivity. METHODS: Clinical data were used to derive representative absorbed doses for several treatment schemes for 177Lu-PRRT and for 90Y-PRRT and considered as input data for the radiobiological model. Both uniform and non-uniform activity distributions were considered for kidneys and cortex; for tumors a possible uptake reduction after each cycle and inter-patient radiosensitivity variability were investigated. Normal-Tissue-Complication-Probability (NTCP) and Tumor-Control-Probability (TCP) were evaluated. RESULTS: Hyper-cycling has a limited advantage in terms of BED reduction on kidneys for 177Lu, while for 90Y the effect is sizable and helps in reducing the NTCP. For all 177Lu-schemes the renal toxicity risk is negligible while for some 90Y-schemes the NTCP is not null. In case of tumor uptake reduction with cycles the treatment efficacy is reduced with a BED loss up to 46%. The TCP decreases when assuming normally-distributed tumor radiosensitivity values. CONCLUSIONS: This paper discusses how the combination of dosimetry and radiobiological modeling may help in exploring the link between the treatment schedule and the potential clinical outcome. The results highlight the capability of model to reproduce the available clinical data and provide useful qualitative information. Further investigation on dose distribution and dose uptake reduction with accurate clinical data is needed to progress in this field.


Asunto(s)
Lutecio/uso terapéutico , Modelos Biológicos , Radioisótopos/uso terapéutico , Radioterapia/métodos , Receptores de Péptidos/metabolismo , Radioisótopos de Itrio/uso terapéutico , Adulto , Algoritmos , Femenino , Humanos , Riñón/efectos de la radiación , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/radioterapia , Órganos en Riesgo , Radiometría
4.
Eur J Nucl Med Mol Imaging ; 41(6): 1113-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24570094

RESUMEN

PURPOSE: The presence of a bulky tumour at staging on CT is an independent prognostic factor in malignant lymphomas. However, its prognostic value is limited in diffuse disease. Total metabolic tumour volume (TMTV) determined on (18)F-FDG PET/CT could give a better evaluation of the total tumour burden and may help patient stratification. Different methods of TMTV measurement established in phantoms simulating lymphoma tumours were investigated and validated in 40 patients with Hodgkin lymphoma and diffuse large B-cell lymphoma. METHODS: Data were processed by two nuclear medicine physicians in Reggio Emilia and Créteil. Nineteen phantoms filled with (18)F-saline were scanned; these comprised spherical or irregular volumes from 0.5 to 650 cm(3) with tumour-to-background ratios from 1.65 to 40. Volumes were measured with different SUVmax thresholds. In patients, TMTV was measured on PET at staging by two methods: volumes of individual lesions were measured using a fixed 41% SUVmax threshold (TMTV41) and a variable visually adjusted SUVmax threshold (TMTVvar). RESULTS: In phantoms, the 41% threshold gave the best concordance between measured and actual volumes. Interobserver agreement was almost perfect. In patients, the agreement between the reviewers for TMTV41 measurement was substantial (ρ c = 0.986, CI 0.97 - 0.99) and the difference between the means was not significant (212 ± 218 cm(3) for Créteil vs. 206 ± 219 cm(3) for Reggio Emilia, P = 0.65). By contrast the agreement was poor for TMTVvar. There was a significant direct correlation between TMTV41 and normalized LDH (r = 0.652, CI 0.42 - 0.8, P <0.001). Higher disease stages and bulky tumour were associated with higher TMTV41, but high TMTV41 could be found in patients with stage 1/2 or nonbulky tumour. CONCLUSION: Measurement of baseline TMTV in lymphoma using a fixed 41% SUVmax threshold is reproducible and correlates with the other parameters for tumour mass evaluation. It should be evaluated in prospective studies.


Asunto(s)
Enfermedad de Hodgkin/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Adolescente , Adulto , Anciano , Femenino , Fluorodesoxiglucosa F18 , Enfermedad de Hodgkin/patología , Humanos , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Imagen Multimodal/instrumentación , Radiofármacos , Tomografía Computarizada por Rayos X/instrumentación , Carga Tumoral
5.
EJNMMI Phys ; 10(1): 31, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221434

RESUMEN

BACKGROUND: 18F-FDG PET/CT imaging allows to study oncological patients and their relative diagnosis through the standardised uptake value (SUV) evaluation. During radiopharmaceutical injection, an extravasation event may occur, making the SUV value less accurate and possibly leading to severe tissue damage. The study aimed to propose a new technique to monitor and manage these events, to provide an early evaluation and correction to the estimated SUV value through a SUV correction coefficient. METHODS: A cohort of 70 patients undergoing 18F- FDG PET/CT examinations was enrolled. Two portable detectors were secured on the patients' arms. The dose-rate (DR) time curves on the injected DRin and contralateral DRcon arm were acquired during the first 10 min of injection. Such data were processed to calculate the parameters ΔpinNOR = (DRinmax- DRinmean)/DRinmax and ΔRt = (DRin(t) - DRcon(t)), where DRinmax is the maximum DR value, DRinmean is the average DR value in the injected arm. OLINDA software allowed dosimetric estimation of the dose in the extravasation region. The estimated residual activity in the extravasation site allowed the evaluation of the SUV's correction value and to define an SUV correction coefficient. RESULTS: Four cases of extravasations were identified for which ΔRt [(390 ± 26) µSv/h], while ΔRt [(150 ± 22) µSv/h] for abnormal and ΔRt [(24 ± 11) µSv/h] for normal cases. The ΔpinNOR showed an average value of (0.44 ± 0.05) for extravasation cases and an average value of (0.91 ± 0.06) and (0.77 ± 0.23) in normal and abnormal classes, respectively. The percentage of SUV reduction (SUV%CR) ranges between 0.3% and 6%. The calculated self-tissue dose values range from 0.027 to 0.573 Gy, according to the segmentation modality. A similar correlation between the inverse of ΔpinNOR and the normalised ΔRt with the SUV correction coefficient was found. CONCLUSIONS: The proposed metrics allowed to characterised the extravasation events in the first few minutes after the injection, providing an early SUV correction when necessary. We also assume that the characterisation of the DR-time curve of the injection arm is sufficient for the detection of extravasation events. Further validation of these hypotheses and key metrics is recommended in larger cohorts.

6.
EJNMMI Phys ; 10(1): 73, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37993667

RESUMEN

INTRODUCTION: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.

7.
Eur J Nucl Med Mol Imaging ; 39(9): 1381-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22588628

RESUMEN

PURPOSE: The aim of our work is to evaluate the added diagnostic value of respiratory gated (4-D) positron emission tomography/computed tomography (PET/CT) in lung lesion detection/characterization in a large patient population of a multicentre retrospective study. METHODS: The data of 155 patients (89 men, 66 women, mean age 63.9 ± 11.1 years) from 5 European centres and submitted to standard (3-D) and 4-D PET/CT were retrospectively analysed. Overall, 206 lung lesions were considered for the analysis (mean ± SD lesions dimension 14.7 ± 11.8 mm). Maximum standardized uptake values (SUV(max)) and lesion detectability were assessed for both 3-D and 4-D PET/CT studies; 3-D and 4-D PET/CT findings were compared to clinical follow-up as standard reference. RESULTS: Mean ± SD 3-D and 4-D SUV(max) values were 5.2 ± 5.1 and 6.8 ± 6.1 (p < 0.0001), respectively, with an average percentage increase of 30.8 %. In 3-D PET/CT, 86 of 206 (41.7 %) lesions were considered positive, 70 of 206 (34 %) negative and 50 of 206 (24.3 %) equivocal, while in 4-D PET/CT 117 of 206 (56.8 %) lesions were defined as positive, 80 of 206 (38.8 %) negative and 9 of 206 (4.4 %) equivocal. In 34 of 50 (68 %) 3-D equivocal lesions follow-up data were available and the presence of malignancy was confirmed in 21 of 34 (61.8 %) lesions, while in 13 of 34 (38.2 %) was excluded. In 31 of these 34 controlled lesions, 20 of 34 (58.8 %) and 11 of 34 (32.4 %) were correctly classified by 4-D PET/CT as positive and negative, respectively; 3 of 34 (8.8 %) remained equivocal. With equivocal lesions classified as positive, the overall accuracy of 3-D and 4-D was 85.7 and 92.8 %, respectively, while the same figures were 80.5 and 94.2 % when equivocal lesions were classified as negative. CONCLUSION: The respiratory gated PET/CT technique is a valuable clinical tool in diagnosing lung lesions, improving quantification and confidence in reporting, reducing 3-D undetermined findings and increasing the overall accuracy in lung lesion detection and characterization.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Imagen Multimodal , Tomografía de Emisión de Positrones , Técnicas de Imagen Sincronizada Respiratorias , Tomografía Computarizada por Rayos X , Europa (Continente) , Femenino , Tomografía Computarizada Cuatridimensional , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
8.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35158862

RESUMEN

Peptide receptor radionuclide therapy (PRRT) is an effective therapeutic option in patients with metastatic neuroendocrine tumor (NET). However, PRRT fails in about 15-30% of cases. Identification of biomarkers predicting the response to PRRT is essential for treatment tailoring. We aimed to evaluate the predictive and prognostic role of semiquantitative and volumetric parameters obtained from the 68Ga-DOTATOC PET/CT before therapy (bPET) and after two cycles of PRRT (iPET). A total of 46 patients were included in this retrospective analysis. The primary tumor was 78% gastroenteropancreatic (GEP), 13% broncho-pulmonary and 9% of unknown origin. 35 patients (76.1%) with stable disease or partial response after PRRT were classified as responders and 11 (23.9%) as non-responders. Logistic regression analysis identified that baseline total volume (bTV) was associated with therapy outcome (OR 1.17; 95%CI 1.02-1.32; p = 0.02). No significant association with PRRT response was observed for other variables. High bTV was confirmed as the only variable independently associated with OS (HR 12.76, 95%CI 1.53-107, p = 0.01). In conclusion, high bTV is a negative predictor for PRRT response and is associated with worse OS rates. Early iPET during PRRT apparently does not provide information useful to change the management of NET patients.

9.
EJNMMI Phys ; 8(1): 55, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34297218

RESUMEN

PURPOSE: Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time-activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative 177Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. METHODS: The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. RESULTS: Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. CONCLUSION: This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests.

10.
Curr Radiopharm ; 13(3): 204-217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32186275

RESUMEN

INTRODUCTION: In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC. MATERIALS AND METHODS: A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually "in vitro" studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion. RESULTS: Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported. CONCLUSION: PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Imagen Molecular/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Planificación de la Radioterapia Asistida por Computador/métodos , Fluorodesoxiglucosa F18 , Humanos , Radiofármacos
11.
PLoS One ; 15(8): e0236466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764764

RESUMEN

AIM: The present work concerns the comparison of the performances of three systems for dosimetry in RPT that use different techniques for absorbed dose calculation (organ-level dosimetry, voxel-level dose kernel convolution and Monte Carlo simulations). The aim was to assess the importance of the choice of the most adequate calculation modality, providing recommendations about the choice of the computation tool. METHODS: The performances were evaluated both on phantoms and patients in a multi-level approach. Different phantoms filled with a 177Lu-radioactive solution were used: a homogeneous cylindrical phantom, a phantom with organ-shaped inserts and two cylindrical phantoms with inserts different for shape and volume. A total of 70 patients with NETs treated by PRRT with 177Lu-DOTATOC were retrospectively analysed. RESULTS: The comparisons were performed mainly between the mean values of the absorbed dose in the regions of interest. A general better agreement was obtained between Dose kernel convolution and Monte Carlo simulations results rather than between either of these two and organ-level dosimetry, both for phantoms and patients. Phantoms measurements also showed the discrepancies mainly depend on the geometry of the inserts (e.g. shape and volume). For patients, differences were more pronounced than phantoms and higher inter/intra patient variability was observed. CONCLUSION: This study suggests that voxel-level techniques for dosimetry calculation are potentially more accurate and personalized than organ-level methods. In particular, a voxel-convolution method provides good results in a short time of calculation, while Monte Carlo based computation should be conducted with very fast calculation systems for a possible use in clinics, despite its intrinsic higher accuracy. Attention to the calculation modality is recommended in case of clinical regions of interest with irregular shape and far from spherical geometry, in which Monte Carlo seems to be more accurate than voxel-convolution methods.


Asunto(s)
Lutecio/química , Fantasmas de Imagen/estadística & datos numéricos , Radioisótopos/química , Radiometría/estadística & datos numéricos , Receptores de Péptidos/aislamiento & purificación , Algoritmos , Humanos , Método de Montecarlo , Dosis de Radiación , Receptores de Péptidos/química , Estudios Retrospectivos
12.
EJNMMI Phys ; 7(1): 63, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044651

RESUMEN

BACKGROUND: Internal dosimetry evaluation consists of a multi-step process ranging from imaging acquisition to absorbed dose calculations. Assessment of uncertainty is complicated and, for that reason, it is commonly ignored in clinical routine. However, it is essential for adequate interpretation of the results. Recently, the EANM published a practical guidance on uncertainty analysis for molecular radiotherapy based on the application of the law of propagation of uncertainty. In this study, we investigated the overall uncertainty on a sample of a patient following the EANM guidelines. The aim of this study was to provide an indication of the typical uncertainties that may be expected from performing dosimetry, to determine parameters that have the greatest effect on the accuracy of calculations and to consider the potential improvements that could be made if these effects were reduced. RESULTS: Absorbed doses and the relative uncertainties were calculated for a sample of 49 patients and a total of 154 tumours. A wide range of relative absorbed dose uncertainty values was observed (14-102%). Uncertainties associated with each quantity along the absorbed dose calculation chain (i.e. volume, recovery coefficient, calibration factor, activity, time-activity curve fitting, time-integrated activity and absorbed dose) were estimated. An equation was derived to describe the relationship between the uncertainty in the absorbed dose and the volume. The largest source of error was the VOI delineation. By postulating different values of FWHM, the impact of the imaging system spatial resolution on the uncertainties was investigated. DISCUSSION: To the best of our knowledge, this is the first analysis of uncertainty in molecular radiotherapy based on a cohort of clinical cases. Wide inter-lesion variability of absorbed dose uncertainty was observed. Hence, a proper assessment of the uncertainties associated with the calculations should be considered as a basic scientific standard. A model for a quick estimate of uncertainty without implementing the entire error propagation schema, which may be useful in clinical practice, was presented. Ameliorating spatial resolution may be in future the key factor for accurate absorbed dose assessment.

13.
Front Med (Lausanne) ; 7: 601853, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33575262

RESUMEN

Aim: This work aims to evaluate whether the radiomic features extracted by 68Ga-DOTATOC-PET/CT of two patients are associated with the response to peptide receptor radionuclide therapy (PRRT) in patients affected by neuroendocrine tumor (NET). Methods: This is a pilot report in two NET patients who experienced a discordant response to PRRT (responder vs. non-responder) according to RECIST1.1. The patients presented with liver metastasis from the rectum and pancreas G3-NET, respectively. Whole-body total-lesion somatostatin receptor-expression (TLSREwb-50) and somatostatin receptor-expressing tumor volume (SRETV wb-50) were obtained in pre- and post-PRRT PET/CT. Radiomic analysis was performed, extracting 38 radiomic features (RFs) from the patients' lesions. The Mann-Whitney test was used to compare RFs in the responder patient vs. the non-responder patient. Pearson correlation and principal component analysis (PCA) were used to evaluate the correlation and independence of the different RFs. Results: TLSREwb-50 and SRETVwb-50 modifications correlate with RECIST1.1 response. A total of 28 RFs extracted on pre-therapy PET/CT showed significant differences between the two patients in the Mann-Whitney test (p < 0.05). A total of seven second-order features, with poor correlation with SUVmax and PET volume, were identified by the Pearson correlation matrix. Finally, the first two PCA principal components explain 83.8% of total variance. Conclusion: TLSREwb-50 and SRETVwb-50 are parameters that might be used to predict and to assess the PET response to PRRT. RFs might have a role in defining inter-patient heterogeneity and in the prediction of therapy response. It is important to implement future studies with larger and more homogeneous patient populations to confirm the efficacy of these biomarkers.

14.
Comput Methods Programs Biomed ; 185: 105153, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31678792

RESUMEN

BACKGROUND AND OBJECTIVES: Malignant lymphomas are cancers of the immune system and are characterized by enlarged lymph nodes that typically spread across many different sites. Many different histological subtypes exist, whose diagnosis is typically based on sampling (biopsy) of a single tumor site, whereas total body examinations with computed tomography and positron emission tomography, though not diagnostic, are able to provide a comprehensive picture of the patient. In this work, we exploit a data-driven approach based on multiple-instance learning algorithms and texture analysis features extracted from positron emission tomography, to predict differential diagnosis of the main malignant lymphomas subtypes. METHODS: We exploit a multiple-instance learning setting where support vector machines and random forests are used as classifiers both at the level of single VOIs (instances) and at the level of patients (bags). We present results on two datasets comprising patients that suffer from four different types of malignant lymphomas, namely diffuse large B cell lymphoma, follicular lymphoma, Hodgkin's lymphoma, and mantle cell lymphoma. RESULTS: Despite the complexity of the task, experimental results show that, with sufficient data samples, some cancer subtypes, such as the Hodgkin's lymphoma, can be identified from texture information: in particular, we achieve a 97.0% of sensitivity (recall) and a 94.1% of predictive positive value (precision) on a dataset that consists in 60 patients. CONCLUSIONS: The presented study indicates that texture analysis features extracted from positron emission tomography, combined with multiple-instance machine learning algorithms, can be discriminating for different malignant lymphomas subtypes.


Asunto(s)
Linfoma/clasificación , Aprendizaje Automático , Algoritmos , Conjuntos de Datos como Asunto , Humanos , Linfoma/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Tomografía Computarizada por Rayos X/métodos
15.
Sci Rep ; 10(1): 21693, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303795

RESUMEN

The current framework of radiological protection of occupational exposed medical workers reduced the eye-lens equivalent dose limit from 150 to 20 mSv per year requiring an accurate dosimetric evaluation and an increase understanding of radiation induced effects on Lens cells considering the typical scenario of occupational exposed medical operators. Indeed, it is widely accepted that genomic damage of Lens epithelial cells (LEC) is a key mechanism of cataractogenesis. However, the relationship between apoptosis and cataractogenesis is still controversial. In this study biological and physical data are combined to improve the understanding of radiation induced effects on LEC. To characterize the occupational exposure of medical workers during angiographic procedures an INNOVA 4100 (General Electric Healthcare) equipment was used (scenario A). Additional experiments were conducted using a research tube (scenario B). For both scenarios, the frequencies of binucleated cells, micronuclei, p21-positive cells were assessed with different doses and dose rates. A Monte-Carlo study was conducted using a model for the photon generation with the X-ray tubes and with the Petri dishes considering the two different scenarios (A and B) to reproduce the experimental conditions and validate the irradiation setups to the cells. The simulation results have been tallied using the Monte Carlo code MCNP6. The spectral characteristics of the different X-ray beams have been estimated. All irradiated samples showed frequencies of micronuclei and p21-positive cells higher than the unirradiated controls. Differences in frequencies increased with the delivered dose measured with Gafchromic films XR-RV3. The spectrum incident on eye lens and Petri, as estimated with MCNP6, was in good agreement in the scenario A (confirming the experimental setup), while the mean energy spectrum was higher in the scenario B. Nevertheless, the response of LEC seemed mainly related to the measured absorbed dose. No effects on viability were detected. Our results support the hypothesis that apoptosis is not responsible for cataract induced by low doses of X-ray (i.e. 25 mGy) while the induction of transient p21 may interfere with the disassembly of the nuclear envelop in differentiating LEC, leading to cataract formation. Further studies are needed to better clarify the relationship we suggested between DNA damage, transient p21 induction and the inability of LEC enucleation.


Asunto(s)
Catarata/etiología , Daño del ADN/efectos de la radiación , Células Epiteliales/patología , Células Epiteliales/efectos de la radiación , Cristalino/citología , Cristalino/efectos de la radiación , Exposición Profesional/efectos adversos , Dosis de Radiación , Rayos X/efectos adversos , Células Cultivadas , Humanos , Método de Montecarlo
16.
Nucl Med Commun ; 30(2): 176-82, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19194215

RESUMEN

OBJECTIVE: Beta-emitting radionuclides are being increasingly used in targeted radionuclide therapy in nuclear medicine. In particular, the pure high-energy beta-emitter 90Y (Emax=2.27 MeV) has a physical half-life compatible with the pharmacokinetics of peptides. The use of this isotope implies an increase in the radiation dose received by the nuclear medicine staff. The aim of this study is thus the evaluation of the personal beta-dosimetry data related to therapeutic 90Y-labelled DOTA-D-Phe1-Tyr3-octreotide preparation and administration in a nuclear medicine department. METHODS: Personal dose measurements were carried out with a series of thin active layer ultrasensitive MCP-Ns (LiF: Mg, Cu, P) dosimeters fixed at the operator's fingertips and by means of some direct reading dosimeters; other individual protection devices, such as shielded aprons and anti-X gloves, were also used. RESULTS: The 95th percentile of the chemist's skin equivalent dose distribution was 1.759 mSv/GBq by using 0.10-mm anti-X gloves and 0.265 mSv/GBq by using 0.20-mm anti-X gloves. The 95th percentile of the physician's skin equivalent dose distribution was 1.198 mSv/GBq by using 0.10-mm anti-X gloves. The use of an anti-X apron during administration permits saving absorbed doses by a factor over 97% for both Hp(10) and Hp(0.07). CONCLUSION: Because of the physical properties of beta-emitters, an increased number of therapeutic sessions is to be expected. The dose values measured till now, resulting from a high radioprotection level modus operandi, have always respected the threshold limits reported by the European Directive EURATOM 96/29 05/13/1996 for exposed workers, even in addition to other clinical practices in the department.


Asunto(s)
Química , Medicina Nuclear , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Octreótido/análogos & derivados , Protección Radiológica/métodos , Radiometría/métodos , Humanos , Italia , Octreótido/análisis , Dosis de Radiación , Radiofármacos/análisis
17.
J Appl Clin Med Phys ; 10(4): 220-231, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19918221

RESUMEN

This study aims at evaluating the dependence of 4D-PET data sorting on the number of phases in which the respiratory cycle can be divided. The issue is to find the best compromise to reduce the conflicting effects induced by increasing the number of phases: lesion motion on each set of images decreases, but on the other hand image noise increases. The IQ NEMA 2001 IEC body phantom was used to simulate the movement of neoplastic lesions in the thorax and abdomen, investigating the effect of target size (10-37 mm), lesion to background activity concentrations ratio (4-to-1 and 8-to-1), total acquisition time (3, 6, 12, 20 min) and number of phase partition (1, 2, 4, 6, 8, 10, 13). The phantom was moved in a cranial-caudal direction with an excursion of 25 mm and with a period of 4.0 s. Five parameters associated to lesion volume and activity concentration were considered to assess the capability of the 4D-PET technique to "freeze" the phantom motion. The results for all the parameters showed the capability of the 4D-PET acquisition technique to "freeze" the lesion motion. The division into 6 phases was found to be the best compromise between temporal resolution and image noise for the phase where the "lesions" move faster, whereas the partition into 4 phases could be used if a stable breathing phase is considered.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Mecánica Respiratoria/efectos de la radiación , Técnicas de Imagen Sincronizada Respiratorias/métodos , Algoritmos , Humanos , Fantasmas de Imagen , Mecánica Respiratoria/fisiología , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos
18.
Phys Med ; 57: 153-159, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30738519

RESUMEN

BACKGROUND: At present activity quantification is one of the most critical step in dosimetry calculation, and Partial Volume Effect (PVE) one of the most important source of error. In recent years models based upon phantoms that incorporate hot spheres have been used to establish recovery models. In this context the goal of this study was to point out the most critical issues related to PVE and to establish a model closer to a biological imaging environment. METHODS: Two different phantoms, filled with a 177Lu solution, were used to obtain the PVE Recovery Coefficients (RCs): a phantom with spherical inserts and a phantom with organ-shaped inserts. Two additional phantoms with inserts of various geometrical shapes and an anthropomorphic phantom were acquired to compare the real activities to predicted values after PVE correction. RESULTS: The RCs versus volume of the inserts produced two different curves, one for the spheres and one for the organs. After PVE correction, accuracy on activity quantification averaged over all inserts of three test phantoms passed from -26% to 1.3% (from 26% to 10% for absolute values). CONCLUSION: RCs is a simple method for PVE correction easily applicable in clinical routine. The use of two different models for organs and lesions has permitted to closely mimic the situation in a living subject. A marked improvement in the quantification of activity was observed when PVE correction was adopted, even if further investigations should be performed for more accurate models of PVE corrections.


Asunto(s)
Octreótido/análogos & derivados , Radioterapia , Receptores de Somatostatina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
19.
Nucl Med Biol ; 35(6): 721-4, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18678358

RESUMEN

INTRODUCTION: Imaging of somatostatin receptor expressing tumours has been greatly enhanced by the use of (68)Ga-DOTATOC and PET/CT. METHODS: In this work, a purification method for the (68)Ge/(68)Ga generator eluate and a method to produce (68)Ga-DOTATOC suitable for clinical use were evaluated. The generator eluate was purified and concentrated on a cation-exchange cartridge in HCl/acetone media. The efficacy of this procedure in eliminating metal impurities from the (68)Ga solution was investigated by ICP-MS. The radiotracer quality was evaluated by radio-TLC, GC and gamma-ray spectrometry. RESULTS: (68)Ga-DOTATOC preparations (n=33) were carried out with a mean synthesis yield of 59.3+/-2.8% (not corrected for decay) and a batch activity ranging from 555 to 296 MBq. The radiochemical and radionuclidic purity were >98% and 99.9999%, respectively. With this purification process, >95% of the Fe(III), Zn(II) and Mn(II) were eliminated from the solution. CONCLUSIONS: (68)Ga-DOTATOC produced with this method can be efficiently used in nuclear medicine departments for PET evaluations.


Asunto(s)
Radioisótopos de Galio/química , Octreótido/análogos & derivados , Compuestos Organometálicos/síntesis química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Medicina Clínica/métodos , Marcaje Isotópico/métodos , Octreótido/síntesis química
20.
Phys Med ; 45: 177-185, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29472084

RESUMEN

Peptide receptor radionuclide therapy (PRRT) is an effective MRT (molecular radiotherapy) treatment, which consists of multiple administrations of a radiopharmaceutical labelled with 177Lu or 90Y. Through sequential functional imaging a patient specific 3D dosimetry can be derived. Multiple scans should be previously co-registered to allow accurate absorbed dose calculations. The purpose of this study is to evaluate the impact of image registration algorithms on 3D absorbed dose calculation. A cohort of patients was extracted from the database of a clinical trial in PRRT. They were administered with a single administration of 177Lu-DOTATOC. All patients underwent 5 SPECT/CT sequential scans at 1 h, 4 h, 24 h, 40 h, 70 h post-injection that were subsequently registered using rigid and deformable algorithms. A similarity index was calculated to compare rigid and deformable registration algorithms. 3D absorbed dose calculation was carried out with the Raydose Monte Carlo code. The similarity analysis demonstrated the superiority of the deformable registrations (p < .001). Average absorbed dose to the kidneys calculated using rigid image registration was consistently lower than the average absorbed dose calculated using the deformable algorithm (90% of cases), with percentage differences in the range [-19; +4]%. Absorbed dose to lesions were also consistently lower (90% of cases) when calculated with rigid image registration with absorbed dose differences in the range [-67.2; 100.7]%. Deformable image registration had a significant role in calculating 3D absorbed dose to organs or lesions with volumes smaller than 100 mL. Image based 3D dosimetry for 177Lu-DOTATOC PRRT is significantly affected by the type of algorithm used to register sequential SPECT/CT scans.


Asunto(s)
Octreótido/análogos & derivados , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Imagenología Tridimensional/métodos , Riñón/diagnóstico por imagen , Riñón/efectos de la radiación , Método de Montecarlo , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/radioterapia , Octreótido/uso terapéutico , Receptores de Péptidos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA