Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32559462

RESUMEN

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Asunto(s)
Caperuzas de ARN/genética , Infecciones por Virus ARN/genética , Proteínas Recombinantes de Fusión/genética , Regiones no Traducidas 5'/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Humanos , Virus de la Influenza A/metabolismo , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Sistemas de Lectura Abierta/genética , Caperuzas de ARN/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
2.
Mol Cell ; 74(3): 481-493.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30904393

RESUMEN

The use of alternative translation initiation sites enables production of more than one protein from a single gene, thereby expanding the cellular proteome. Although several such examples have been serendipitously found in bacteria, genome-wide mapping of alternative translation start sites has been unattainable. We found that the antibiotic retapamulin specifically arrests initiating ribosomes at start codons of the genes. Retapamulin-enhanced Ribo-seq analysis (Ribo-RET) not only allowed mapping of conventional initiation sites at the beginning of the genes, but strikingly, it also revealed putative internal start sites in a number of Escherichia coli genes. Experiments demonstrated that the internal start codons can be recognized by the ribosomes and direct translation initiation in vitro and in vivo. Proteins, whose synthesis is initiated at internal in-frame and out-of-frame start sites, can be functionally important and contribute to the "alternative" bacterial proteome. The internal start sites may also play regulatory roles in gene expression.


Asunto(s)
Genoma Bacteriano/genética , Iniciación de la Cadena Peptídica Traduccional , Proteoma/genética , Proteómica , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Codón Iniciador/genética , Diterpenos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , ARN Mensajero/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética
3.
PLoS Pathog ; 20(5): e1012034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814986

RESUMEN

Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.


Asunto(s)
Ilarvirus , Enfermedades de las Plantas , Interferencia de ARN , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Codón de Terminación/genética , Ilarvirus/genética , Nicotiana/virología , Nicotiana/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818801

RESUMEN

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Liberación del Virus , Humanos , Antígeno 2 del Estroma de la Médula Ósea/antagonistas & inhibidores , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , COVID-19/virología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética
5.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629253

RESUMEN

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Asunto(s)
Mitocondrias , Iniciación de la Cadena Peptídica Traduccional , Animales , Humanos , Bacterias/genética , Mamíferos/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217614

RESUMEN

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Asunto(s)
Codón Iniciador , Evolución Molecular , Genes Homeobox , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Ratones , Sistemas de Lectura Abierta
7.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014783

RESUMEN

RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets. We developed 77 family-level Hidden Markov Model profiles for the viral RNA-dependent RNA polymerase (RdRp)-the only universal "hallmark" gene of RNA viruses. By using these to search the National Center for Biotechnology Information Transcriptome Shotgun Assembly database, we identified 5,867 contigs encoding RNA virus RdRps or fragments thereof and analyzed their diversity, taxonomic classification, phylogeny, and host associations. Our study expands the known diversity of RNA viruses, and the 77 curated RdRp Profile Hidden Markov Models provide a useful resource for the virus discovery community.


Asunto(s)
Virus ARN , Transcriptoma , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Filogenia , ARN Viral , Genoma Viral
9.
Arthroscopy ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38331366

RESUMEN

PURPOSE: To compare return-to-sport (RTS) rates, graft failure rates, and clinical outcomes in patients who underwent revision anterior cruciate ligament reconstruction (R-ACLR) with additional lateral extra-articular tenodesis (LET) versus isolated R-ACLR. METHODS: A retrospective review of the medical records of patients who underwent R-ACLR with or without a modified Lemaire LET procedure was performed. Seventy-four patients with at least 2 years of follow-up who had high-grade positive pivot-shift test findings were included. Concomitant procedures such as meniscectomy and meniscal repair were collected, along with any complications and/or graft failure. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and the International Knee Documentation Committee Subjective Knee Form score were collected. The ability to RTS was defined as fully, partially, or not returned. RESULTS: Of the patients, 39 underwent isolated R-ACLR (mean age ± standard deviation, 29.2 ± 12.2 years) whereas 35 underwent an additional LET procedure (mean age, 24.6 ± 7.4 years). The mean length of follow-up in the R-ACLR group was 56.6 ± 26.5 months compared with 44.3 ± 17.6 months in the R-ACLR-LET group (P = .02) (range, 24-120 months). Patient-reported outcome measures were higher in the R-ACLR-LET group, with the KOOS Activities of Daily Living (93.5 ± 2.0 vs 97.2 ± 1.6, P = .03) and KOOS Sport (63.0 ± 3.6 vs 74.3 ± 3.8, P = .05) subdomain scores reaching the level of statistical significance. No differences were found in the other KOOS subdomain scores or the International Knee Documentation Committee scores. Failure rates were not significantly different between the groups (12.8% for R-ACLR vs 11.4% for R-ACLR-LET, P = .99). There were 13 patients (72.2%) in the R-ACLR group and 14 patients (60.8%) in the R-ACLR-LET group who did not RTS. CONCLUSIONS: R-ACLR with additional LET showed similar failure and RTS rates to isolated R-ACLR after failed ACLR. The R-ACLR-LET group showed better functional results with significantly higher KOOS subdomain scores for activities of daily living, as well as sports and recreation. However, this study was unable to recommend the modified Lemaire LET procedure to be routinely used in R-ACLR patients. LEVEL OF EVIDENCE: Level III, retrospective comparative therapeutic trial.

10.
Arthroscopy ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38521206

RESUMEN

PURPOSE: To provide an update on the incidence and extent of graft extrusion after meniscal allograft transplantation (MAT) and to systematically review the literature to identify whether the type of root fixation or additional surgical techniques may reduce the risk of graft extrusion development. METHODS: A systematic search, in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, was conducted using the MEDLINE database, EMBASE database, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials (CENTRAL) database. Patients undergoing medial meniscal allograft transplantation (MMAT) or lateral meniscal allograft transplantation (LMAT) were included. The primary outcome measure was meniscal extrusion measured on postoperative magnetic resonance imaging scans taken more than 6 weeks after MAT. The following extrusion outcomes were investigated: absolute extrusion (AE), relative percentage of extrusion (RPE), and proportion of major extrusion (PME). Additional surgical techniques that reduced the risk of graft extrusion development in the included comparative studies were identified. RESULTS: For MMAT, the pooled mean extrusion outcomes for soft-tissue versus bony fixation were as follows: AE of 3.2 mm versus 3.36 mm and RPE of 44.43% versus 33.18%. The pooled mean PME for MMAT with soft-tissue fixation was 51.62%. For LMAT, the pooled mean extrusion outcomes for soft-tissue versus bony fixation were as follows: AE of 3.72 mm versus 2.78 mm, RPE of 31.89% versus 29.47%, and PME of 64.37% versus 35.80%. Additional capsulodesis was identified as a technique to reduce LMAT extrusion. CONCLUSIONS: This study highlights that graft extrusion is a common finding after MMAT and LMAT, independent of the root fixation technique. However, MAT extrusion with bony fixation was, depending on the outcome measurement, lower than or equal to that with soft-tissue fixation. LEVEL OF EVIDENCE: Level IV, systematic review of Level I, III, and IV studies.

11.
Arthroscopy ; 40(2): 384-396.e1, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37270112

RESUMEN

PURPOSE: To determine whether the addition of lateral extra-articular tenodesis (LET) to anterior cruciate ligament reconstruction (ACLR) would improve return-to-sport (RTS) rates in young, active patients who play high-risk sports. METHODS: This multicenter randomized controlled trial compared standard hamstring tendon ACLR with combined ACLR and LET using a strip of the iliotibial band (modified Lemaire technique). Patients aged 25 years or younger with an anterior cruciate ligament-deficient knee were included. Patients also had to meet 2 of the following criteria: (1) pivot-shift grade 2 or greater, (2) participation in a high-risk or pivoting sport, and (3) generalized ligamentous laxity. Time to return and level of RTS were determined via administration of a questionnaire at 24 months postoperatively. RESULTS: We randomized 618 patients in this study, 553 of whom played high-risk sports preoperatively. The proportion of patients who did not RTS was similar between the ACLR (11%) and ACLR-LET (14%) groups; however, the graft rupture rate was significantly different (11.2% in ACLR group vs 4.1% in ACLR-LET group, P = .004). The most cited reason for no RTS was lack of confidence and/or fear of reinjury. A stable knee was associated with nearly 2 times greater odds of returning to a high-level high-risk sport postoperatively (odds ratio, 1.92; 95% confidence interval, 1.11-3.35; P = .02). There were no significant differences in patient-reported functional outcomes or hop test results between groups (P > .05). Patients who returned to high-risk sports had better hamstring symmetry than those who did not RTS (P = .001). CONCLUSIONS: At 24 months postoperatively, patients who underwent ACLR plus LET had a similar RTS rate to those who underwent ACLR alone. Although the subgroup analysis did not show a statistically significant increase in RTS with the addition of LET, on returning, the addition of LET kept subjects playing longer by reducing graft failure rates. LEVEL OF EVIDENCE: Level I, randomized controlled trial.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Tenodesis , Humanos , Tenodesis/métodos , Volver al Deporte , Ligamento Cruzado Anterior/cirugía , Articulación de la Rodilla/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos
12.
PLoS Pathog ; 17(3): e1009403, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735221

RESUMEN

Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell's exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Ensamble de Virus/fisiología , Replicación Viral/fisiología
13.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138976

RESUMEN

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Virus de la Hepatitis Murina/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Factor de Transcripción Activador 6/metabolismo , Animales , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Sistemas de Liberación de Medicamentos , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , RNA-Seq , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
14.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398933

RESUMEN

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Asunto(s)
Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Animales , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimología , Humanos , Monoéster Fosfórico Hidrolasas/genética , Células Vero , Proteínas Virales/genética , Liberación del Virus
16.
Nucleic Acids Res ; 49(20): 11938-11958, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34751406

RESUMEN

The 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed -1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem-loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting.


Asunto(s)
Sistema de Lectura Ribosómico , Proteínas Virales/metabolismo , Ribosomas/metabolismo , Theilovirus/genética , Theilovirus/metabolismo , Proteínas Virales/química
17.
Knee Surg Sports Traumatol Arthrosc ; 31(9): 4016-4026, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37170015

RESUMEN

PURPOSE: To determine whether different regimens of multimodal analgesia will reduce postoperative pain scores, opioid consumption, costs and hospital length-of-stay following hip arthroscopy. METHODS: From 2018 to 2021, 132 patients undergoing hip arthroscopy for femoroacetabular impingement syndrome (FAIS) were included in this prospective, single-center randomized controlled trial. Patients were randomized into four treatment groups: (1) Group 1-Control: opioid medication (oxycodone-acetaminophen 5 mg/325 mg, 1-2 tabs q6H as needed), Heterotopic ossification prophylaxis-Naprosyn 500 mg twice daily × 3 weeks); (2) Group 2-Control + postoperative sleeping aid (Zopiclone 7.5 mg nightly × 7 days); (3) Group 3-Control + preoperative and postoperative Gabapentin (600 mg orally, 1 h preoperatively; 600 mg postoperatively, 8 h following pre-op dose); (4) Group 4-Control + pre-medicate with Celecoxib (400 mg orally, 1 h preoperatively) The primary outcome was pain measured with a visual analog scale, monitored daily for the first week and every other day for 6 weeks. Secondary outcomes included opioid consumption, healthcare resource use, and hospital length of stay. RESULTS: Patient characteristics were similar between groups. There were no statistically significant differences in pain scores between groups at any timepoint after adjusting for intra-operative traction time, intra-operative opioid administration and preoperative pain scores (p > 0.05). There were also no significant differences in the number of days that opioids were taken (n.s.) and the average daily morphine milligram equivalents consumed (n.s.). Similarly, there were no statistically significant differences in length of stay in the experimental groups, compared with the control group (n.s.). Finally, there were no differences in cost between groups (n.s.). CONCLUSION: The routine use of Zopiclone, Celecoxib and Gabapentin did not improve postoperative pain control or reduce length-of-stay following hip arthroscopy. Therefore, these medications are not recommended for routine postoperative pain control following hip arthroscopy. LEVEL OF EVIDENCE: l.


Asunto(s)
Analgesia , Analgésicos Opioides , Humanos , Analgésicos Opioides/uso terapéutico , Gabapentina/uso terapéutico , Celecoxib/uso terapéutico , Estudios Prospectivos , Artroscopía , Tiempo de Internación , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control
18.
Mol Plant Microbe Interact ; 35(9): 835-844, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35671468

RESUMEN

Potyviruses comprise the largest and most important group of plant positive-strand RNA viruses. The potyviral cell-to-cell movement protein P3N-PIPO is expressed via transcriptional slippage at a conserved GAAAAAA sequence, leading to insertion of an extra 'A' in a proportion of viral transcripts. Transcriptional slippage is determined by the potyviral replicase, the conserved slippery site, and its flanking nucleotides. Here, we investigate the dynamics of transcriptional slippage at different slip-site sequences, infection stages, and environmental conditions. We detect a modest increase in the level of transcripts with insertion towards later timepoints. In addition, we investigate the fate of transcripts with insertion by separately looking at different RNA subpopulations: (+)RNA, (-)RNA, translated RNA, and virion RNA. We find differences in insertional slippage between (+)RNA and (-)RNA but not other subpopulations. Our results suggest that there can be selection against the use of (-)RNAs with insertions as templates for transcription or replication and demonstrate that insertional slippage can occur at high frequency also during (-)RNA synthesis. Since transcripts with insertions are potential targets for degradation, we investigate the connection to nonsense-mediated decay (NMD). We find that these transcripts are targeted to NMD, but we only observe an impact on the level of transcripts with insertion when the insertional slippage rate is high. Together, these results further our understanding of the mechanism and elucidate the dynamics of potyviral transcriptional slippage. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Potyvirus , Proteínas Virales , Nucleótidos/metabolismo , Potyvirus/genética , Potyvirus/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Nicotiana/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
J Virol ; 95(14): e0066321, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33963053

RESUMEN

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Asunto(s)
COVID-19 , Genoma Viral , Motivos de Nucleótidos , Pliegue del ARN , ARN Viral , SARS-CoV-2/fisiología , Replicación Viral , Animales , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Células Vero
20.
Knee Surg Sports Traumatol Arthrosc ; 30(11): 3689-3699, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35451638

RESUMEN

PURPOSE: To assess how meniscal repair and excision impact short term patient-reported outcome measures (PROMs), knee stability, and early graft rupture rates following primary hamstring anterior cruciate ligament reconstruction (ACLR) with or without lateral extra-articular tenodesis (LET) in a group of young active patients where meniscal repair is commonly advocated. METHODS: Six hundred and eighteen patients under 25 years of age at high-risk of graft failure following ACLR were recruited to the Stability 1 study. Multivariable regression models were developed to identify statistically and clinically significant surgical and demographic predictors of Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee Subjective Knee Form (IKDC), ACL Quality of Life Questionnaire (ACL-QOL) and Marx Activity Rating Scale (MARS) scores. Chi-Square tests of independence were used to explore the association between meniscal status (torn, not torn), meniscal treatment (excision or repair), graft rupture, and rotatory knee laxity. RESULTS: Medial meniscus repair was associated with worse outcomes on the KOOS (ß = -1.32, 95% CI: -1.57 to -1.10, p = 0.003), IKDC (ß = -1.66, 95% CI: -1.53 to -1.02, p = 0.031) and ACL-QOL (ß = -1.25, 95% CI: -1.61 to 1.02, p = n.s.). However, these associations indicated small, clinically insignificant changes based on reported measures of clinical relevance. Other important predictors of post-operative PROMs included age, sex, and baseline scores. Medial meniscus excision and lateral meniscus treatment (repair or excision) did not have an important influence on PROMs. There was no significant association between meniscal treatment and graft rupture or rotatory knee laxity. CONCLUSION: While repairing the medial meniscus may result in a small reduction in PROM scores at two-year follow-up, these differences are not likely to be important to patients or clinicians. Any surgical morbidity associated with meniscal repair appears negligible in terms of PROMs. Meniscal repair does not affect rotatory laxity or graft failure rates in the short term. Therefore, meniscal repair should likely be maintained as the standard of care for concomitant meniscal tears with ACLR. LEVEL OF EVIDENCE: III.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/cirugía , Humanos , Articulación de la Rodilla/cirugía , Medición de Resultados Informados por el Paciente , Calidad de Vida , Rotura/complicaciones , Rotura/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA