Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949537

RESUMEN

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Adolescente , Femenino , Anciano , Adulto , Niño , Adulto Joven , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Anciano de 80 o más Años , Preescolar , Persona de Mediana Edad , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas , Tamaño de la Muestra
2.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37859592

RESUMEN

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Asunto(s)
Experiencias Adversas de la Infancia , Pruebas Psicológicas , Trastorno de la Personalidad Esquizotípica , Autoinforme , Adulto , Masculino , Femenino , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Trastorno de la Personalidad Esquizotípica/diagnóstico por imagen , Trastorno de la Personalidad Esquizotípica/psicología , Encéfalo/diagnóstico por imagen , Sustancia Gris , Imagen por Resonancia Magnética/métodos
3.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639510

RESUMEN

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Humanos , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética/métodos , Encéfalo
5.
Comput Biol Med ; 179: 108845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002314

RESUMEN

BACKGROUND: Brain extraction in magnetic resonance imaging (MRI) data is an important segmentation step in many neuroimaging preprocessing pipelines. Image segmentation is one of the research fields in which deep learning had the biggest impact in recent years. Consequently, traditional brain extraction methods are now being replaced by deep learning-based methods. METHOD: Here, we used a unique dataset compilation comprising 7837 T1-weighted (T1w) MR images from 191 different OpenNeuro datasets in combination with advanced deep learning methods to build a fast, high-precision brain extraction tool called deepbet. RESULTS: deepbet sets a novel state-of-the-art performance during cross-dataset validation with a median Dice score (DSC) of 99.0 on unseen datasets, outperforming the current best performing deep learning (DSC=97.9) and classic (DSC=96.5) methods. While current methods are more sensitive to outliers, deepbet achieves a Dice score of >97.4 across all 7837 images from 191 different datasets. This robustness was additionally tested in 5 external datasets, which included challenging clinical MR images. During visual exploration of each method's output which resulted in the lowest Dice score, major errors could be found for all of the tested tools except deepbet. Finally, deepbet uses a compute efficient variant of the UNet architecture, which accelerates brain extraction by a factor of ≈10 compared to current methods, enabling the processing of one image in ≈2 s on low level hardware. CONCLUSIONS: In conclusion, deepbet demonstrates superior performance and reliability in brain extraction across a wide range of T1w MR images of adults, outperforming existing top tools. Its high minimal Dice score and minimal objective errors, even in challenging conditions, validate deepbet as a highly dependable tool for accurate brain extraction. deepbet can be conveniently installed via "pip install deepbet" and is publicly accessible at https://github.com/wwu-mmll/deepbet.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Bases de Datos Factuales , Neuroimagen/métodos
6.
Comput Biol Med ; 179: 108820, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002319

RESUMEN

BACKGROUND AND OBJECTIVE: Flow cytometry is a widely used technique for identifying cell populations in patient-derived fluids, such as peripheral blood (PB) or cerebrospinal fluid (CSF). Despite its ubiquity in research and clinical practice, the process of gating, i.e., manually identifying cell types, is labor-intensive and error-prone. The objective of this study is to address this challenge by introducing GateNet, a neural network architecture designed for fully end-to-end automated gating without the need for correcting batch effects. METHODS: For this study a unique dataset is used which comprises over 8,000,000 events from N = 127 PB and CSF samples which were manually labeled independently by four experts. Applying cross-validation, the classification performance of GateNet is compared to the human experts performance. Additionally, GateNet is applied to a publicly available dataset to evaluate generalization. The classification performance is measured using the F1 score. RESULTS: GateNet achieves F1 scores ranging from 0.910 to 0.997 demonstrating human-level performance on samples unseen during training. In the publicly available dataset, GateNet confirms its generalization capabilities with an F1 score of 0.936. Importantly, we also show that GateNet only requires ≈10 samples to reach human-level performance. Finally, gating with GateNet only takes 15 microseconds per event utilizing graphics processing units (GPU). CONCLUSIONS: GateNet enables fully end-to-end automated gating in flow cytometry, overcoming the labor-intensive and error-prone nature of manual adjustments. The neural network achieves human-level performance on unseen samples and generalizes well to diverse datasets. Notably, its data efficiency, requiring only ∼10 samples to reach human-level performance, positions GateNet as a widely applicable tool across various domains of flow cytometry.


Asunto(s)
Citometría de Flujo , Redes Neurales de la Computación , Citometría de Flujo/métodos , Humanos
7.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198165

RESUMEN

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Femenino , Masculino , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Imagen de Difusión Tensora , Estudios de Cohortes , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Biomarcadores
8.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36874281

RESUMEN

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

9.
Sci Adv ; 8(1): eabg9471, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985964

RESUMEN

The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.

10.
JAMA Psychiatry ; 79(9): 879-888, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35895072

RESUMEN

Importance: Identifying neurobiological differences between patients with major depressive disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression. Objective: To quantify the upper bounds of univariate effect sizes, estimated predictive utility, and distributional dissimilarity of healthy individuals and those with depression across structural magnetic resonance imaging (MRI), diffusion-tensor imaging, and functional task-based as well as resting-state MRI, and to compare results with an MDD polygenic risk score (PRS) and environmental variables. Design, Setting, and Participants: This was a cross-sectional, case-control clinical neuroimaging study. Data were part of the Marburg-Münster Affective Disorders Cohort Study. Patients with depression and healthy controls were recruited from primary care and the general population in Münster and Marburg, Germany. Study recruitment was performed from September 11, 2014, to September 26, 2018. The sample comprised patients with acute and chronic MDD as well as healthy controls in the age range of 18 to 65 years. Data were analyzed from October 29, 2020, to April 7, 2022. Main Outcomes and Measures: Primary analyses included univariate partial effect size (η2), classification accuracy, and distributional overlapping coefficient for healthy individuals and those with depression across neuroimaging modalities, controlling for age, sex, and additional modality-specific confounding variables. Secondary analyses included patient subgroups for acute or chronic depressive status. Results: A total of 1809 individuals (861 patients [47.6%] and 948 controls [52.4%]) were included in the analysis (mean [SD] age, 35.6 [13.2] years; 1165 female patients [64.4%]). The upper bound of the effect sizes of the single univariate measures displaying the largest group difference ranged from partial η2 of 0.004 to 0.017, and distributions overlapped between 87% and 95%, with classification accuracies ranging between 54% and 56% across neuroimaging modalities. This pattern remained virtually unchanged when considering either only patients with acute or chronic depression. Differences were comparable with those found for PRS but substantially smaller than for environmental variables. Conclusions and Relevance: Results of this case-control study suggest that even for maximum univariate biological differences, deviations between patients with MDD and healthy controls were remarkably small, single-participant prediction was not possible, and similarity between study groups dominated. Biological psychiatry should facilitate meaningful outcome measures or predictive approaches to increase the potential for a personalization of the clinical practice.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Adulto , Anciano , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Adulto Joven
11.
Biol Psychiatry ; 91(6): 582-592, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34809987

RESUMEN

BACKGROUND: Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD. METHODS: Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables. RESULTS: Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18

Asunto(s)
Trastorno Bipolar , Adulto , Trastorno Bipolar/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adelgazamiento de la Corteza Cerebral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Manía , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Neuroimagen , Adulto Joven
12.
PLoS One ; 16(7): e0254062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288935

RESUMEN

PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development. It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences. It is especially designed to support the iterative model development process and automates the repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the workflow ensures unbiased performance estimates while still allowing the user to fully customize the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline implementation supporting more complex data streams, feature combinations, and algorithm selection. Metrics and results can be conveniently visualized using the PHOTONAI Explorer and predictive models are shareable in a standardized format for further external validation or application. A growing add-on ecosystem allows researchers to offer data modality specific algorithms to the community and enhance machine learning in the areas of the life sciences. Its practical utility is demonstrated on an exemplary medical machine learning problem, achieving a state-of-the-art solution in few lines of code. Source code is publicly available on Github, while examples and documentation can be found at www.photon-ai.com.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Algoritmos , Conjuntos de Datos como Asunto , Redes Neurales de la Computación , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA