Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361041

RESUMEN

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
2.
Proc Natl Acad Sci U S A ; 119(45): e2200477119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322753

RESUMEN

IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.


Asunto(s)
Neoplasias , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Sirtuina 1/metabolismo , ARN/metabolismo , Procesos Neoplásicos , Lisosomas/genética , Lisosomas/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031242

RESUMEN

Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.


Asunto(s)
Polaridad Celular , Matriz Extracelular/patología , Adhesiones Focales , Metástasis de la Neoplasia , Neoplasias/patología , Fibras de Estrés/patología , Humanos
4.
Annu Rev Biomed Eng ; 24: 29-59, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35119915

RESUMEN

The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical propertiesfor mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patología , Humanos , Invasividad Neoplásica/patología , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 117(21): 11387-11398, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32385149

RESUMEN

Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.


Asunto(s)
Colágeno/ultraestructura , Miofibroblastos/citología , Células del Estroma/citología , Tejido Adiposo/citología , Fenómenos Biomecánicos , Diferenciación Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/ultraestructura , Fibronectinas/metabolismo , Humanos , Mecanotransducción Celular , Miofibroblastos/metabolismo , Miofibroblastos/ultraestructura , Células del Estroma/metabolismo , Células del Estroma/ultraestructura
6.
Small ; 17(15): e2001432, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32462807

RESUMEN

During breast cancer bone metastasis, tumor cells interact with bone microenvironment components including inorganic minerals. Bone mineralization is a dynamic process and varies spatiotemporally as a function of cancer-promoting conditions such as age and diet. The functional relationship between skeletal dissemination of tumor cells and bone mineralization, however, is unclear. Standard histological analysis of bone metastasis frequently relies on prior demineralization of bone, while methods that maintain mineral are often harsh and damage fluorophores commonly used to label tumor cells. Here, fluorescent silica nanoparticles (SNPs) are introduced as a robust and versatile labeling strategy to analyze tumor cells within mineralized bone. SNP uptake and labeling efficiency of MDA-MB-231 breast cancer cells is characterized with cryo-scanning electron microscopy and different tissue processing methods. Using a 3D in vitro model of marrow-containing, mineralized bone as well as an in vivo model of bone metastasis, SNPs are demonstrated to allow visualization of labeled tumor cells in mineralized bone using various imaging modalities including widefield, confocal, and light sheet microscopy. This work suggests that SNPs are valuable tools to analyze tumor cells within mineralized bone using a broad range of bone processing and imaging techniques with the potential to increase the understanding of bone metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Nanopartículas , Neoplasias Óseas/diagnóstico por imagen , Huesos , Línea Celular Tumoral , Femenino , Humanos , Dióxido de Silicio , Microambiente Tumoral
7.
J Struct Biol ; 210(1): 107474, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32032755

RESUMEN

As interest in the role of extracellular vesicles in cell-to-cell communication has increased, so has the use of microscopy and analytical techniques to assess their formation, release, and morphology. In this study, we evaluate scanning electron microscopy (SEM) and cryo-SEM for characterizing the formation and shedding of vesicles from human breast cell lines, parental and hyaluronan synthase 3-(HAS3)-overexpressing MCF10A cells, grown directly on transmission electron microscopy (TEM) grids. While cells imaged with conventional and cryo-SEM exhibit distinct morphologies due to the sample preparation process for each technique, tubular structures protruding from the cell surfaces were observed with both approaches. For HAS3-MCF10A cells, vesicles were present along the length of membrane protrusions. Once completely shed from the cells, extracellular vesicles were characterized using nanoparticle tracking analysis (NTA) and cryo-TEM. The size distributions obtained by each technique were different not only in the range of vesicles analyzed, but also in the relative proportion of smaller-to-larger vesicles. These differences are attributed to the presence of biological debris in the media, which is difficult to differentiate from vesicles in NTA. Furthermore, we demonstrate that cryo-TEM can be used to distinguish between vesicles based on their respective surface structures, thereby providing a path to differentiating vesicle subpopulations and identifying their size distributions. Our study emphasizes the necessity of pairing several techniques to characterize extracellular vesicles.


Asunto(s)
Microscopía por Crioelectrón/métodos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Comunicación Celular/fisiología , Exosomas/ultraestructura , Femenino , Glicocálix/metabolismo , Humanos , Microscopía Electrónica de Transmisión
8.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33692663

RESUMEN

Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.

9.
Am J Pathol ; 189(10): 2019-2035, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31323189

RESUMEN

Obesity is associated with adipose inflammation, defined by macrophages encircling dead adipocytes, as well as extracellular matrix (ECM) remodeling and increased risk of breast cancer. Whether ECM affects macrophage phenotype in obesity is uncertain. A better understanding of this relationship could be strategically important to reduce cancer risk or improve outcomes in the obese. Using clinical samples, computational approaches, and in vitro decellularized ECM models, this study quantified the relative abundance of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in human breast adipose tissue, determined molecular similarities between obesity and tumor-associated macrophages, and assessed the regulatory effect of obese versus lean ECM on macrophage phenotype. Our results suggest that breast adipose tissue contains more M2- than M1-biased macrophages across all body mass index categories. Obesity further increased M2-biased macrophages but did not affect M1-biased macrophage density. Gene Set Enrichment Analysis suggested that breast tissue macrophages from obese versus lean women are more similar to tumor-associated macrophages. These changes positively correlated with adipose tissue interstitial fibrosis, and in vitro experiments indicated that obese ECM directly stimulates M2-biased macrophage functions. However, mammographic density cannot be used as a clinical indicator of these changes. Collectively, these data suggest that obesity-associated interstitial fibrosis promotes a macrophage phenotype similar to tumor-associated macrophages, which may contribute to the link between obesity and breast cancer.


Asunto(s)
Tejido Adiposo/patología , Neoplasias de la Mama/patología , Matriz Extracelular/patología , Macrófagos/patología , Obesidad/complicaciones , Animales , Neoplasias de la Mama/cirugía , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Persona de Mediana Edad , Fenotipo , Pronóstico , Estudios Prospectivos
10.
Proc Natl Acad Sci U S A ; 114(40): 10542-10547, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923958

RESUMEN

Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.


Asunto(s)
Densidad Ósea , Neoplasias Óseas , Neoplasias de la Mama , Nanopartículas , Tibia , Microtomografía por Rayos X , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Durapatita/metabolismo , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Trasplante de Neoplasias , Tibia/diagnóstico por imagen , Tibia/metabolismo
11.
J Struct Biol ; 202(1): 25-34, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29221896

RESUMEN

Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mama/metabolismo , Calcinosis/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Anciano , Mama/patología , Mama/ultraestructura , Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Fenómenos Químicos , Femenino , Humanos , Mamografía , Microscopía Electrónica , Persona de Mediana Edad , Sensibilidad y Especificidad , Espectrometría por Rayos X , Microtomografía por Rayos X
12.
Proc Natl Acad Sci U S A ; 112(52): 16000-5, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668367

RESUMEN

Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease-Tsp-1 axis as a potential antimetastatic therapeutic target.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neutrófilos/metabolismo , Péptido Hidrolasas/metabolismo , Neumonía/metabolismo , Trombospondina 1/metabolismo , Animales , Western Blotting , Trasplante de Médula Ósea , Catepsina G/metabolismo , Línea Celular Tumoral , Femenino , Citometría de Flujo , Expresión Génica , Elastasa de Leucocito/metabolismo , Lipopolisacáridos/administración & dosificación , Neoplasias Pulmonares/secundario , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Proteasas/metabolismo , Trombospondina 1/genética
13.
Proc Natl Acad Sci U S A ; 109(25): 9786-91, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665775

RESUMEN

Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.


Asunto(s)
Tejido Adiposo/citología , Neoplasias de la Mama/terapia , Trasplante de Células Madre , Animales , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Matriz Extracelular , Femenino , Humanos , Ratones , Trasplante de Neoplasias
14.
Biochim Biophys Acta ; 1830(9): 4314-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23567798

RESUMEN

BACKGROUND: Changes in fibronectin (Fn) matrix remodeling contribute to mammary tumor angiogenesis and are related to altered behavior of adipogenic stromal cells; yet, the underlying mechanisms remain unclear due in part to a lack of reductionist model systems that allow the inherent complexity of cell-derived extracellular matrices (ECMs) to be deciphered. In particular, breast cancer-associated adipogenic stromal cells not only enhance the composition, quantity, and rigidity of deposited Fn, but also partially unfold these matrices. However, the specific effect of Fn conformation on tumor angiogenesis is undefined. METHODS: Decellularized matrices and a conducting polymer device consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) were used to examine the effect of Fn conformation on the behavior of 3T3-L1 preadipocytes. Changes in cell adhesion and proangiogenic capability were tested via cell counting and by quantification of vascular endothelial growth factor (VEGF) secretion, respectively. Integrin-blocking antibodies were utilized to examine varied integrin specificity as a potential mechanism. RESULTS: Our findings suggest that tumor-associated partial unfolding of Fn decreases adhesion while enhancing VEGF secretion by breast cancer-associated adipogenic precursor cells, and that altered integrin specificity may underlie these changes. CONCLUSIONS AND GENERAL SIGNIFICANCE: These results not only have important implications for our understanding of tumorigenesis, but also enhance knowledge of cell-ECM interactions that may be harnessed for other applications including advanced tissue engineering approaches. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.


Asunto(s)
Adipocitos/efectos de los fármacos , Neoplasias de la Mama/irrigación sanguínea , Fibronectinas/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Polímeros/administración & dosificación , Poliestirenos/administración & dosificación , Ingeniería de Tejidos/métodos , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Annu Rev Biomed Eng ; 15: 29-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23642249

RESUMEN

Heterogeneous microenvironmental conditions play critical roles in cancer pathogenesis and therapy resistance and arise from changes in tissue dimensionality, cell-extracellular matrix (ECM) interactions, soluble factor signaling, oxygen as well as metabolic gradients, and exogeneous biomechanical cues. Traditional cell culture approaches are restricted in their ability to mimic this complexity with physiological relevance, offering only partial explanation as to why novel therapeutic compounds are frequently efficacious in vitro but disappoint in preclinical and clinical studies. In an effort to overcome these limitations, physical sciences-based strategies have been employed to model specific aspects of the cancer microenvironment. Although these strategies offer promise to reveal the contributions of microenvironmental parameters on tumor initiation, progression, and therapy resistance, they, too, frequently suffer from limitations. This review highlights physicochemical and biological key features of the tumor microenvironment, critically discusses advantages and limitations of current engineering strategies, and provides a perspective on future opportunities for engineered tumor models.


Asunto(s)
Neoplasias/patología , Ingeniería de Tejidos/métodos , Acidosis , Animales , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Matriz Extracelular/metabolismo , Humanos , Hipoxia , Metástasis de la Neoplasia , Transducción de Señal , Estrés Mecánico
16.
APL Bioeng ; 8(3): 036104, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38966325

RESUMEN

Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on both biochemical signaling and the mechanical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue using discrete element method simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At vs the activity and strength of the cohesion between cancer cells, as well as the mechanical properties of the adipocytes and extracellular matrix in which adipocytes are embedded. We show that the degree of invasion collapses onto a master curve as a function of the dimensionless energy scale Ec , which grows linearly with the cancer cell velocity persistence time and fluctuations, is inversely proportional to the system pressure, and is offset by the cancer cell cohesive energy. When E c > 1 , cancer cells will invade the adipose tissue, whereas for E c < 1 , cancer cells and adipocytes remain de-mixed. We also show that At decreases when the adipocytes are constrained by the ECM by an amount that depends on the spatial heterogeneity of the adipose tissue.

17.
ArXiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562454

RESUMEN

Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on numerous biochemical and physical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue as a physical process by carrying out simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At versus the activity and strength of the cohesion between cancer cells, as well as mechanical properties of the adipocytes and extracellular matrix (ECM) in which the adipocytes are embedded. We show that the degree of invasion collapses onto a master curve by plotting it versus a dimensionless energy scale Ec, which grows linearly with mean-square fluctuations and persistence time of the cancer cell velocities, is inversely proportional to the pressure of the system, and has an offset that increases with the cancer cell cohesive energy. The condition, Ec≫1, indicates that cancer cells will invade the adipose tissue, whereas for Ec≪1, the cancer cells and adipocytes remain demixed. We also show that constraints on adipocyte positions by the ECM decrease At relative to that obtained for unconstrained adipocytes. Finally, spatial heterogeneity in structural and mechanical properties of the adipocytes in the presence of ECM impedes invasion relative to adipose tissue with uniform properties.

18.
Adv Mater ; : e2311505, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279892

RESUMEN

Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.

19.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328161

RESUMEN

Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.

20.
Biomed Microdevices ; 15(4): 583-593, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23559404

RESUMEN

Prevailing evidence has established the fundamental role of microenvironmental conditions in tumorigenesis. However, the ability to identify, interrupt, and translate the underlying cellular and molecular mechanisms into meaningful therapies remains limited, due in part to a lack of organotypic culture systems that accurately recapitulate tumor physiology. Integration of tissue engineering with microfabrication technologies has the potential to address this challenge and mimic tumor heterogeneity with pathological fidelity. Specifically, this approach allows recapitulating global changes of tissue-level phenomena, while also controlling microscale variability of various conditions including spatiotemporal presentation of soluble signals, biochemical and physical characteristics of the extracellular matrix, and cellular composition. Such platforms have continued to elucidate the role of the microenvironment in cancer pathogenesis and significantly improve drug discovery and screening, particularly for therapies that target tumor-enabling stromal components. This review discusses some of the landmark efforts in the field of micro-tumor engineering with a particular emphasis on deregulated tissue organization and mass transport phenomena in the tumor microenvironment.


Asunto(s)
Microtecnología/métodos , Disciplinas de las Ciencias Naturales/métodos , Neoplasias/patología , Ingeniería de Tejidos/métodos , Animales , Humanos , Modelos Biológicos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA