Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurogenet ; 28(3-4): 291-301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24697410

RESUMEN

Each neuropil module, or cartridge, in the fly's lamina has a fixed complement of cells. Of five types of monopolar cell interneurons, only L4 has collaterals that invade neighboring cartridges. In the proximal lamina, these collaterals form reciprocal synapses with both the L2 of their own cartridge and the L4 collateral branches from two other neighboring cartridges. During synaptogenesis, L4 collaterals strongly express the cell adhesion protein Kirre, a member of the irre cell recognition module (IRM) group of proteins ( Fischbach et al., 2009 , J Neurogenet, 23, 48-67). The authors show by mutant analysis and gene knockdown techniques that L4 neurons develop their lamina collaterals in the absence of this cell adhesion protein. Using electron microscopy (EM), the authors demonstrate, however, that without Kirre protein these L4 collaterals selectively form fewer synapses. The collaterals of L4 neurons of various genotypes reconstructed from serial-section EM revealed that the number of postsynaptic sites was dramatically reduced in the absence of Kirre, almost eliminating any synaptic input to L4 neurons. A significant reduction of presynaptic sites was also detected in kirre(0) mutants and gene knockdown flies using RNA interference. L4 neuron reciprocal synapses are thus almost eliminated. A presynaptic marker, Brp-short(GFP) confirmed these data using confocal microscopy. This study reveals that removing Kirre protein specifically disrupts the functional L4 synaptic network in the Drosophila lamina.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Red Nerviosa/citología , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología
2.
Development ; 137(19): 3303-13, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20724453

RESUMEN

Topographic maps, which maintain the spatial order of neurons in the order of their axonal connections, are found in many parts of the nervous system. Here, we focus on the communication between retinal axons and their postsynaptic partners, lamina neurons, in the first ganglion of the Drosophila visual system, as a model for the formation of topographic maps. Post-mitotic lamina precursor cells differentiate upon receiving Hedgehog signals delivered through newly arriving retinal axons and, before maturing to extend neurites, extend short processes toward retinal axons to create the lamina column. The lamina column provides the cellular basis for establishing stereotypic synapses between retinal axons and lamina neurons. In this study, we identified two cell-adhesion molecules: Hibris, which is expressed in post-mitotic lamina precursor cells; and Roughest, which is expressed on retinal axons. Both proteins belong to the nephrin/NEPH1 family. We provide evidence that recognition between post-mitotic lamina precursor cells and retinal axons is mediated by interactions between Hibris and Roughest. These findings revealed mechanisms by which axons of presynaptic neurons deliver signals to induce the development of postsynaptic partners at the target area. Postsynaptic partners then recognize the presynaptic axons to make ensembles, thus establishing a topographic map along the anterior/posterior axis.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/metabolismo , Transducción de Señal
3.
Dev Biol ; 344(2): 948-56, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20599904

RESUMEN

In the Drosophila eye, neighboring ommatidia are separated by inter-ommatidial cells (IOCs). How this ommatidial spacing emerges during eye development is not clear. Here we demonstrate that four adhesion molecules of the Irre cell recognition module (IRM) family play a redundant role in maintaining separation of ommatidia. The four IRM proteins are divided into two groups: Kirre and Rst are expressed in IOCs, and Hbs and Sns in primary pigment cells (1 degrees s). Kirre binds Hbs and Sns in vivo and in vitro. Reducing activity of either Rst or Kirre alone had minimal effects on ommatidial spacing, but reducing both together led to direct ommatidium:ommatidium contact. A similar phenotype was also observed when reducing both Hbs and Sns. Consistent with the role of these factors in sorting ommatidia, mis-expression of Hbs plus Sns within a single IOC led to complete separation of the cell from neighboring ommatidia. Our results indicate mutual preferential adhesion between ommatidia and IOCs mediated by four IRM proteins is both necessary and sufficient to maintain separation of ommatidia.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Animales , Fenotipo
4.
Curr Biol ; 16(18): 1835-43, 2006 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16979562

RESUMEN

Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date . In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map . Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated . However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a "hard-wired" visual map in the fly brain.


Asunto(s)
Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología , Vías Visuales/fisiología , Animales , Drosophila/genética , Drosophila/metabolismo , Genes de Insecto , Mutación , Células Fotorreceptoras de Invertebrados/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/ultraestructura , Sinapsis/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vías Visuales/ultraestructura
5.
J Neurogenet ; 23(1-2): 48-67, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19132596

RESUMEN

One of the most challenging problems in developmental neurosciences is to understand the establishment and maintenance of specific membrane contacts between axonal, dendritic, and glial processes in the neuropils, which eventually secure neuronal connectivity. However, underlying cell recognition events are pivotal in other tissues as well. This brief review focuses on the pleiotropic functions of a small, evolutionarily conserved group of proteins of the immunoglobulin superfamily involved in cell recognition. In Drosophila, this protein family comprises Irregular chiasm C/Roughest (IrreC/Rst), Kin of irre (Kirre), and their interacting protein partners, Sticks and stones (SNS) and Hibris (Hbs). For simplicity, we propose to name this ensemble of proteins the irre cell recognition module (IRM) after the first identified member of this family. Here, we summarize evidence that the IRM proteins function together in various cellular interactions, including myoblast fusion, cell sorting, axonal pathfinding, and target recognition in the optic neuropils of Drosophila. Understanding IRM protein function will help to unravel the epigenetic rules by which the intricate neurite networks in sensory neuropils are formed.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/citología , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular Neuronal , Fusión Celular , Drosophila/embriología , Ojo/embriología , Proteínas del Ojo , Mioblastos Esqueléticos/citología , Neuronas/citología , Estructura Terciaria de Proteína , Especificidad de la Especie
6.
Adv Exp Med Biol ; 628: 115-36, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18683642

RESUMEN

The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.


Asunto(s)
Drosophila/anatomía & histología , Drosophila/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Animales , Drosophila/fisiología , Neuronas/citología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Células Fotorreceptoras de Invertebrados/anatomía & histología , Células Fotorreceptoras de Invertebrados/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Vías Visuales/anatomía & histología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología , Percepción Visual/fisiología
7.
PLoS One ; 10(6): e0128490, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053791

RESUMEN

Most animal tissues and organ systems are comprised of highly ordered arrays of varying cell types. The development of external sensory organs requires complex cell-cell communication in order to give each cell a specific identity and to ensure a regular distributed pattern of the sensory bristles. This involves both long and short range signaling mediated by either diffusible or cell anchored factors. In a variety of processes the heterophilic Irre Cell Recognition Module, consisting of the Neph-like proteins: Roughest, Kin of irre and of the Nephrin-like proteins: Sticks and Stones, Hibris, plays key roles in the recognition events of different cell types throughout development. In the present study these proteins are apically expressed in the adhesive belt of epithelial cells participating in sense organ development in a partially exclusive and asymmetric manner. Using mutant analysis the GAL4/UAS system, RNAi and gain of function we found an involvement of all four Irre Cell Recognition Module-proteins in the development of a highly structured array of sensory organs in the wing disc. The proteins secure the regular spacing of sensory organs showing partial redundancy and may function in early lateral inhibition events as well as in cell sorting processes. Comparisons with other systems suggest that the Irre Cell Recognition module is a key organizer of highly repetitive structures.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sensación , Sensilos/metabolismo , Alas de Animales/metabolismo , Animales , Forma de la Célula , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Seudópodos/metabolismo
8.
BMC Genomics ; 5(1): 24, 2004 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-15090076

RESUMEN

BACKGROUND: Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat). RESULTS: Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of brat(k06028) neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic brat(k06028) tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. CONCLUSION: Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Transcripción Genética , Animales , Apoptosis/genética , Neoplasias Encefálicas/patología , Proteínas Portadoras/genética , Ciclo Celular/genética , Reparación del ADN/genética , Replicación del ADN/genética , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Homocigoto , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/genética
9.
PLoS One ; 7(7): e40300, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792268

RESUMEN

Neph molecules are highly conserved immunoglobulin superfamily proteins (IgSF) which are essential for multiple morphogenetic processes, including glomerular development in mammals and neuronal as well as nephrocyte development in D. melanogaster. While D. melanogaster expresses two Neph-like proteins (Kirre and IrreC/Rst), three Neph proteins (Neph1-3) are expressed in the mammalian system. However, although these molecules are highly abundant, their molecular functions are still poorly understood. Here we report on a fly system in which we overexpress and replace endogenous Neph homologs with mammalian Neph1-3 proteins to identify functional Neph protein networks required for neuronal and nephrocyte development. Misexpression of Neph1, but neither Neph2 nor Neph3, phenocopies the overexpression of endogenous Neph molecules suggesting a functional diversity of mammalian Neph family proteins. Moreover, structure-function analysis identified a conserved and specific Neph1 protein motif that appears to be required for the functional replacement of Kirre. Hereby, we establish D. melanogaster as a genetic system to specifically model molecular Neph1 functions in vivo and identify a conserved amino acid motif linking Neph1 to Drosophila Kirre function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/fisiología , Fusión Celular , Secuencia de Consenso , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteínas del Ojo/química , Proteínas del Ojo/fisiología , Expresión Génica , Inmunoglobulinas/biosíntesis , Larva/citología , Larva/genética , Larva/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Ratones , Proteínas Musculares/química , Proteínas Musculares/fisiología , Fenotipo , Filogenia , Transgenes
10.
Mol Cell Biol ; 31(16): 3241-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21690291

RESUMEN

Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.


Asunto(s)
Proteínas Portadoras/fisiología , Comunicación Celular , Proteínas de la Membrana/metabolismo , Morfogénesis , Proteínas Nucleares/fisiología , Animales , Drosophila , Drosophila melanogaster , Ojo/citología , Humanos , Dominios PDZ , Unión Proteica , Proteína Quinasa C , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína
11.
Dev Dyn ; 236(2): 404-15, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17146786

RESUMEN

During myogenesis in Drosophila embryos, a prominent adhesive structure is formed between precursor cells and fusion-competent myoblasts (fcms). Here, we show that Duf/Kirre and its interaction partners Rols7 (found in founder myoblasts and growing myotubes) and Sns (found in fcms) are organized in a ring-structure at the contact points of fcms with precursor cells, while cytoskeletal components like F-actin and Titin are centered in this ring in both cell types. The cytoplasmic protein Blow colocalizes with the actin plugs in fcms after cell adhesion. Furthermore, the requirement of additional as yet unidentified components was demonstrated by using mammalian C2C12 myoblasts. In this study, we propose that the fusion-restricted myogenic-adhesive structure (FuRMAS) is pivotal in linking cell adhesion as well as local F-actin assembly and dynamics to downstream events that ultimately lead to plasma membrane fusion. Moreover, we suggest that the FuRMAS may restrict the area of membrane breakdown.


Asunto(s)
Actinas/metabolismo , Adhesión Celular/fisiología , Drosophila melanogaster/embriología , Complejos Multiproteicos/metabolismo , Mioblastos/fisiología , Animales , Fusión Celular , Línea Celular , Proteínas de Drosophila/metabolismo , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Musculares/metabolismo
12.
Dev Biol ; 289(2): 296-307, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16380111

RESUMEN

The Drosophila cell adhesion molecule Rst plays key roles during the development of the embryonic musculature, spacing of ommatidia in the compound eye and of sensory organs on the antenna, as well as in the neuronal wiring of the optic lobe. In rst(CT) mutants lacking the cytoplasmic domain of the Rst protein, cell sorting and apoptosis in the eye are affected, suggesting a requirement of this domain for Rst function. To identify potential interacting proteins, yeast two-hybrid screens were performed using the cytoplasmic domains of Rst and its paralogue Kirre as baits. Among several putative interactors, two paralogous Drosophila PDZ motif proteins related to X11/Mint were identified. X11/Mint family members in C. elegans (LIN-10) and vertebrates are believed to function as adaptor proteins and to regulate the assembly of multi-subunit complexes at the synapse, thereby linking the vesicle cycle to cell adhesion. Using genetic, cell biological, and biochemical approaches, we show that the interaction of Rst with X11Lalpha is of biological significance. The proteins interact, for example, in the context of cell sorting in the pupal retina.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Adhesión Celular , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Drosophila/embriología , Proteínas de Drosophila/genética , Evolución Molecular , Ojo/embriología , Ojo/metabolismo , Proteínas del Ojo/genética , Microscopía Confocal , Modelos Genéticos , Proteínas Nucleares/genética , Filogenia , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína/genética , Pupa/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
13.
J Muscle Res Cell Motil ; 27(1): 93-106, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16699917

RESUMEN

The rolling pebbles gene of Drosophila encodes two proteins, one of which, Rols7, is essential for myoblast fusion. In addition, Rols 7 is expressed during myofibrillogenesis and in the mature muscles. Here it overlaps with alpha-Actinin (alpha-Actn) and the N-terminus of D-Titin/Kettin/Zormin in the Z-line of the sarcomeres. In the attachment sites of the somatic muscles, Rols7 and the immunoglobulin superfamily protein Dumbfounded/Kin of irreC (Duf/Kirre) colocalise. As Duf/Kirre is detectable only transiently, it may be involved in establishing the first contact of the outgrowing muscle fiber to the epidermal attachment site. We propose that Rols7 and Duf/Kirre link the terminal Z-disc to the cell membrane by direct interaction. This is supported by the fact that in yeast two hybrid assays the tetratricopeptide repeat E (TPR E) of Rols7 shows interaction with the intracellular domain of Duf/Kirre. The colocalisation of Rols7 with alpha-Actn and with D-Titin/Kettin/Zormin in the Z-dics is reflected in interactions with different domains of Rols7 in this assay. In summary, these data show that besides the role in myoblast fusion, Rols7 is a scaffold protein during myofibrillogenesis and in the Z-line of the sarcomere as well as in the terminal Z-disc linking the muscle to the epidermal attachment sites.


Asunto(s)
Actinina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Sarcómeros/metabolismo , Animales , Diferenciación Celular/fisiología , Conectina , Proteínas del Citoesqueleto/metabolismo , Drosophila , Regulación de la Expresión Génica/fisiología , Sustancias Macromoleculares/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/ultraestructura , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/ultraestructura , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Sarcómeros/ultraestructura , Técnicas del Sistema de Dos Híbridos
14.
Mol Cell Neurosci ; 30(3): 326-38, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16154361

RESUMEN

Reggie/Flotillin proteins are upregulated after optic nerve dissection and evolutionary highly conserved components of lipid rafts. Whereas many biochemical and cell culture studies suggest an involvement in the assembly of multiprotein complexes at cell contact sites, not much is known about their biological in vivo functions. We therefore set out to study the expression pattern and the effects of loss- and gain-of-function in the Drosophila melanogaster model system. We found that in flies these proteins are mainly expressed in axons at the root of fiber tracts, in places where strong fasciculation is required, e.g. at the neck of the peduncle of the mushroom bodies and in the optic chiasms. Despite their evolutionary conservation which implies fundamental and important functions, a P-element-induced null mutant (KG00210) of reggie1/flotillin2 (reggie1/flo2) in D. melanogaster shows no apparent phenotypic defects. This was even more surprising as we show that in this reggie1/flo2 null mutant the paralogous Reggie2/Flo1 protein is unstable and degraded, while the transcript is still present. The requirement of Reggie1/Flo2 for Reggie2/Flo1 stabilization is confirmed by misexpression experiments. Reggie2/Flo1 can only be misexpressed when Reggie1/Flo2 is provided as well. Conversely, Reggie1/Flo2 immunoreactivity can be detected, when its transgene is misexpressed alone. Using appropriate Gal4 driver lines, misexpression of Reggie1/Flo2 alone or together with Reggie2/Flo1 in the eye imaginal disc results in a specific and severe mislocalization of cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) (while DE-Cadherin is unaffected) and in differentiation defects pointing to impaired signaling. In the wing imaginal disc, global overexpression of Reggie/Flotillin proteins leads to a significant extension of the Wingless signal and severely disrupts normal wing development. Our data support the notion that Reggie/Flotillin proteins are implicated in signaling processes at cellular contact sites.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Ojo/embriología , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Alas de Animales/embriología , Animales , Axones/metabolismo , Axones/ultraestructura , Moléculas de Adhesión Celular/metabolismo , Secuencia Conservada/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Evolución Molecular , Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/aislamiento & purificación , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/embriología , Cuerpos Pedunculados/metabolismo , Mutación/genética , Quiasma Óptico/citología , Quiasma Óptico/embriología , Quiasma Óptico/metabolismo , Procesamiento Proteico-Postraduccional/genética , Alas de Animales/metabolismo
15.
Dev Genes Evol ; 215(9): 460-69, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16096801

RESUMEN

Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily that has multiple and diverse functions during the development of Drosophila melanogaster. The pleiotropic action of Rst is reflected by its complex and dynamic expression during the development of Drosophila. By an enhancer detection screen, we previously identified several cis-regulatory modules that mediate specific expression of the roughest gene in Drosophila developmental processes. To identify trans-regulators of rst expression, we used the Gal4/UAS system to screen for factors that were sufficient to activate Rst expression when ectopically expressed. By this method we identified the transcription factors Single-minded, Pointed.P1, and Su(H)-VP16. Furthermore, we showed that these factors and, in addition, Dmef2 are able to ectopically activate rst expression via the previously described rst cis-regulatory modules. This fact and the use of mutant analysis allocates the action of the transcription factors to specific developmental contexts. In the case of Sim, we could show that it regulates rst expression in the embryonic midline, but not in the optic lobes. Mutagenesis of Sim consensus binding sites in the regulatory module required for rst expression in the embryonic midline, abolished rst expression; indicating that the regulation of rst by Sim is direct.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Factores Reguladores Miogénicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Elementos Reguladores de la Transcripción , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular Neuronal/metabolismo , Secuencia de Consenso , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Inmunohistoquímica , Mutagénesis Sitio-Dirigida , Factores Reguladores Miogénicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
16.
J Mol Evol ; 56(2): 187-97, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12574866

RESUMEN

The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication. Gene duplications have been proposed to be of major evolutionary significance since duplicated redundant sequences can accumulate mutations without detrimental effects for the organism and leave the duplicated genes free to assume novel functions. To address the issue of conservation of the duplicated sequences and their putative redundancy, as well as to identify putative functional divergence of the paralogs during drosophilid evolution, we performed an interspecies comparison of the rst and kirre genes from D. virilis and D. melanogaster. The D. virilis genome contains orthologues of both rst and kirre and hence the duplication took place before the split of the two lineages and has subsequently been conserved. However, whilst the Rst orthologues show a high degree of sequence similarity, this similarity is lower in Kirre orthologues. Especially the intracellular domains of D. virilis and D. melanogaster Kirre sequences are highly divergent: the D. virilis kirre gene lacks the 3'-most exon present in D. melanogaster, which contains motifs conserved between kirre and rst in D. melanogaster. Hence, while each of the two genes is highly conserved at the level of its exon-intron organization, the selection forces acting on the rst and kirre coding sequences are different. These findings are discussed in the light of general evolutionary mechanisms.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas del Ojo/genética , Proteínas de la Membrana , Proteínas Musculares , Secuencia de Aminoácidos , Animales , Evolución Biológica , Moléculas de Adhesión Celular Neuronal/metabolismo , Clonación Molecular , Secuencia Conservada , Drosophila melanogaster/genética , Exones , Proteínas del Ojo/metabolismo , Duplicación de Gen , Intrones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
17.
Dev Genes Evol ; 214(9): 453-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15278452

RESUMEN

Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily with pleiotropic functions during the development of Drosophila melanogaster. It has been shown to be involved in cell sorting before apoptosis in the developing compound eye, in fusion processes of embryonic muscle development and in axonal pathfinding. In accordance with its multiple functions, the rst gene shows a dynamic expression pattern throughout the development of Drosophila. In order to understand the transcriptional regulation of rst expression we have identified rst cis regulatory sequences in an enhancer detection screen. By dissection of the identified rst cis regulatory sequences we identified several distinct rst regulatory modules. Among others these include elements for expression in interommatidial cells of the pupal eye disc at a time when apoptotic decisions are made in these cells and elements for expression in the embryonic mesoderm. The expression of rst in the embryonic mesoderm is regulated by at least two separate modules.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Drosophila melanogaster/crecimiento & desarrollo , Genes Reporteros , Inmunohistoquímica , Mesodermo/fisiología , Microscopía Confocal , Mapeo Físico de Cromosoma , Sitio de Iniciación de la Transcripción
18.
Proc Natl Acad Sci U S A ; 99(4): 2088-93, 2002 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11842209

RESUMEN

Molluscs display a rich diversity of body plans ranging from the wormlike appearance of aplacophorans to the complex body plan of the cephalopods with highly developed sensory organs, a complex central nervous system, and cognitive abilities unrivaled among the invertebrates. The aim of the current study is to define molecular parameters relevant to the developmental evolution of cephalopods by using the sepiolid squid Euprymna scolopes as a model system. Using PCR-based approaches, we identified one anterior, one paralog group 3, five central, and two posterior group Hox genes. The deduced homeodomain sequences of the E. scolopes Hox cluster genes are most similar to known annelid, brachiopod, and nemertean Hox gene homeodomain sequences. Our results are consistent with the presence of a single Hox gene cluster in cephalopods. Our data also corroborate the proposed existence of a differentiated Hox gene cluster in the last common ancestor of Bilaterians. Furthermore, our phylogenetic analysis and in particular the identification of Post-1 and Post-2 homologs support the Lophotrochozoan clade.


Asunto(s)
Genes Homeobox , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN/metabolismo , Cartilla de ADN/farmacología , ADN Complementario/metabolismo , Datos de Secuencia Molecular , Moluscos , Filogenia , Reacción en Cadena de la Polimerasa , ARN/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA