Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(5): 755-758, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245477

RESUMEN

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Asunto(s)
Academias e Institutos , Investigación Biomédica , Facultades de Medicina
2.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34233165

RESUMEN

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Asunto(s)
Microglía/metabolismo , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Parvalbúminas/metabolismo , Fenotipo , Receptores de GABA-B/metabolismo , Sinapsis/fisiología , Transcripción Genética
4.
Annu Rev Neurosci ; 43: 1-30, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31299170

RESUMEN

Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Neurogénesis/fisiología , Animales , Humanos , Neuronas/fisiología , Factores de Transcripción/metabolismo
5.
Nature ; 601(7893): 404-409, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912118

RESUMEN

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.


Asunto(s)
Encéfalo , Linaje de la Célula , Neuronas GABAérgicas , Células-Madre Neurales , Neurogénesis , Animales , Encéfalo/citología , Diferenciación Celular , Desarrollo Embrionario , Neuronas GABAérgicas/citología , Ratones , Mitosis , Células-Madre Neurales/citología , Neurogénesis/genética , Transcriptoma
6.
Nature ; 597(7878): 693-697, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552240

RESUMEN

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1-3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4-11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.


Asunto(s)
Corteza Cerebral/citología , Epigénesis Genética , Redes Reguladoras de Genes , Interneuronas/citología , Neurogénesis , Animales , Diferenciación Celular , Movimiento Celular , Femenino , Factores de Transcripción MEF2/genética , Masculino , Ratones , Ratones Noqueados , Parvalbúminas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Somatostatina/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588430

RESUMEN

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Asunto(s)
Corteza Cerebral , Neocórtex , Ratones , Animales , Corteza Cerebral/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Interneuronas/fisiología , Biomarcadores/metabolismo , Neuronas GABAérgicas/fisiología
8.
Nature ; 586(7828): 262-269, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999462

RESUMEN

Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.


Asunto(s)
Interneuronas/citología , Primates , Animales , Callithrix , Corteza Cerebral/citología , Femenino , Hurones , Hipocampo/citología , Humanos , Interneuronas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Macaca , Masculino , Ratones , Neostriado/citología , Proteínas del Tejido Nervioso/metabolismo , ARN/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo
10.
Nature ; 555(7697): 457-462, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29513653

RESUMEN

Diverse subsets of cortical interneurons have vital roles in higher-order brain functions. To investigate how this diversity is generated, here we used single-cell RNA sequencing to profile the transcriptomes of mouse cells collected along a developmental time course. Heterogeneity within mitotic progenitors in the ganglionic eminences is driven by a highly conserved maturation trajectory, alongside eminence-specific transcription factor expression that seeds the emergence of later diversity. Upon becoming postmitotic, progenitors diverge and differentiate into transcriptionally distinct states, including an interneuron precursor state. By integrating datasets across developmental time points, we identified shared sources of transcriptomic heterogeneity between adult interneurons and their precursors, and uncovered the embryonic emergence of cardinal interneuron subtypes. Our analysis revealed that the transcription factor Mef2c, which is linked to various neuropsychiatric and neurodevelopmental disorders, delineates early precursors of parvalbumin-expressing neurons, and is essential for their development. These findings shed new light on the molecular diversification of early inhibitory precursors, and identify gene modules that may influence the specification of human interneuron subtypes.


Asunto(s)
Diferenciación Celular , Interneuronas/citología , Interneuronas/fisiología , Inhibición Neural , Corteza Visual/citología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Femenino , Ganglios/citología , Ganglios/metabolismo , Perfilación de la Expresión Génica , Humanos , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Mitosis/genética , Parvalbúminas/metabolismo , ARN Citoplasmático Pequeño/genética , Análisis de la Célula Individual
11.
Nat Rev Neurosci ; 18(5): 299-309, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381833

RESUMEN

The proper construction of neural circuits requires the generation of diverse cell types, their distribution to defined regions, and their specific and appropriate wiring. A major objective in neurobiology has been to understand the molecular determinants that link neural birth to terminal specification and functional connectivity, a task that is especially daunting in the case of cortical interneurons. Considerable evidence supports the idea that an interplay of intrinsic and environmental signalling is crucial to the sequential steps of interneuron specification, including migration, selection of a settling position, morphogenesis and synaptogenesis. However, when and how these influences merge to support the appropriate terminal differentiation of different classes of interneurons remains uncertain. In this Review, we discuss a wealth of recent findings that have advanced our understanding of the developmental mechanisms that contribute to the diversification of interneurons and suggest areas of particular promise for further investigation.


Asunto(s)
Interneuronas/citología , Interneuronas/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neurogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Humanos
12.
Nature ; 526(7573): 448-52, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26416758

RESUMEN

Enhancing repair of myelin is an important but still elusive therapeutic goal in many neurological disorders. In multiple sclerosis, an inflammatory demyelinating disease, endogenous remyelination does occur but is frequently insufficient to restore function. Both parenchymal oligodendrocyte progenitor cells and endogenous adult neural stem cells resident within the subventricular zone are known sources of remyelinating cells. Here we characterize the contribution to remyelination of a subset of adult neural stem cells, identified by their expression of Gli1, a transcriptional effector of the sonic hedgehog pathway. We show that these cells are recruited from the subventricular zone to populate demyelinated lesions in the forebrain but never enter healthy, white matter tracts. Unexpectedly, recruitment of this pool of neural stem cells, and their differentiation into oligodendrocytes, is significantly enhanced by genetic or pharmacological inhibition of Gli1. Importantly, complete inhibition of canonical hedgehog signalling was ineffective, indicating that the role of Gli1 both in augmenting hedgehog signalling and in retarding myelination is specialized. Indeed, inhibition of Gli1 improves the functional outcome in a relapsing/remitting model of experimental autoimmune encephalomyelitis and is neuroprotective. Thus, endogenous neural stem cells can be mobilized for the repair of demyelinated lesions by inhibiting Gli1, identifying a new therapeutic avenue for the treatment of demyelinating disorders.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ventrículos Laterales , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Fármacos Neuroprotectores/antagonistas & inhibidores , Fármacos Neuroprotectores/metabolismo , Oligodendroglía/citología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transducción de Señal , Sustancia Blanca/citología , Proteína con Dedos de Zinc GLI1
13.
J Neurosci ; 39(1): 125-139, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30413647

RESUMEN

Sensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers. L1 also contains a poorly characterized population of GABAergic interneurons (INs), which regulate the impact that different top-down inputs have on PCs. A poor comprehension of L1 IN subtypes and how they affect PC activity has hampered our understanding of the mechanisms that underlie contextual modulation of sensory processing. We used novel genetic strategies in male and female mice combined with electrophysiological and morphological methods to help resolve differences that were unclear when using only electrophysiological and/or morphological approaches. We discovered that L1 contains four distinct populations of INs, each with a unique molecular profile, morphology, and electrophysiology, including a previously overlooked IN population (named here "canopy cells") representing 40% of L1 INs. In contrast to what is observed in other layers, most L1 neurons appear to be unique to the layer, highlighting the specialized character of the signal processing that takes place in L1. This new understanding of INs in L1, as well as the application of genetic methods based on the markers described here, will enable investigation of the cellular and circuit mechanisms of top-down processing in L1 with unprecedented detail.SIGNIFICANCE STATEMENT Neocortical layer 1 (L1) is the main target of corticocortical and subcortical projections that mediate top-down or context-dependent sensory perception. However, this unique layer is often referred to as "enigmatic" because its neuronal composition has been difficult to determine. Using a combination of genetic, electrophysiological, and morphological approaches that helped to resolve differences that were unclear when using a single approach, we were able to decipher the neuronal composition of L1. We identified markers that distinguish L1 neurons and found that the layer contains four populations of GABAergic interneurons, each with unique molecular profiles, morphologies, and electrophysiological properties. These findings provide a new framework for studying the circuit mechanisms underlying the processing of top-down inputs in neocortical L1.


Asunto(s)
Interneuronas/fisiología , Neocórtex/citología , Neocórtex/fisiología , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Fenómenos Electrofisiológicos/fisiología , Femenino , Interneuronas/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Neocórtex/ultraestructura , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Ácido gamma-Aminobutírico/fisiología
14.
J Neurosci ; 39(42): 8347-8361, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31451577

RESUMEN

Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.


Asunto(s)
Corteza Auditiva/fisiopatología , Percepción Auditiva/fisiología , Neuronas GABAérgicas/fisiología , Pérdida Auditiva/fisiopatología , Potenciales Postsinápticos Inhibidores/fisiología , Aprendizaje/fisiología , Estimulación Acústica , Animales , Vías Auditivas/fisiopatología , Femenino , Gerbillinae , Masculino
16.
Annu Rev Neurosci ; 34: 535-67, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21469958

RESUMEN

In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.


Asunto(s)
Interneuronas/fisiología , Inhibición Neural/fisiología , Telencéfalo/citología , Telencéfalo/fisiología , Animales , Humanos , Modelos Neurológicos , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
17.
Nature ; 560(7716): 39-40, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30061644
18.
Nature ; 500(7463): 458-62, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23913275

RESUMEN

Neuromodulatory control by oxytocin is essential to a wide range of social, parental and stress-related behaviours. Autism spectrum disorders (ASD) are associated with deficiencies in oxytocin levels and with genetic alterations of the oxytocin receptor (OXTR). Thirty years ago, Mühlethaler et al. found that oxytocin increases the firing of inhibitory hippocampal neurons, but it remains unclear how elevated inhibition could account for the ability of oxytocin to improve information processing in the brain. Here we describe in mammalian hippocampus a simple yet powerful mechanism by which oxytocin enhances cortical information transfer while simultaneously lowering background activity, thus greatly improving the signal-to-noise ratio. Increased fast-spiking interneuron activity not only suppresses spontaneous pyramidal cell firing, but also enhances the fidelity of spike transmission and sharpens spike timing. Use-dependent depression at the fast-spiking interneuron-pyramidal cell synapse is both necessary and sufficient for the enhanced spike throughput. We show the generality of this novel circuit mechanism by activation of fast-spiking interneurons with cholecystokinin or channelrhodopsin-2. This provides insight into how a diffusely delivered neuromodulator can improve the performance of neural circuitry that requires synapse specificity and millisecond precision.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Hipocampo/citología , Interneuronas/efectos de los fármacos , Oxitocina/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Encéfalo/metabolismo , Colecistoquinina/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Glicina/farmacología , Hipocampo/fisiología , Interneuronas/metabolismo , Ratones , Vías Nerviosas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/metabolismo , Rodopsina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Treonina/farmacología
19.
Nat Rev Neurosci ; 14(3): 202-16, 2013 03.
Artículo en Inglés | MEDLINE | ID: mdl-23385869

RESUMEN

A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.


Asunto(s)
Algoritmos , Corteza Cerebral/citología , Interneuronas/clasificación , Interneuronas/citología , Terminología como Asunto , Ácido gamma-Aminobutírico/metabolismo , Animales , Teorema de Bayes , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Humanos , Interneuronas/metabolismo
20.
Nature ; 472(7343): 351-5, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21460837

RESUMEN

Electrical activity has been shown to regulate development in a variety of species and in various structures, including the retina, spinal cord and cortex. Within the mammalian cortex specifically, the development of dendrites and commissural axons in pyramidal cells is activity-dependent. However, little is known about the developmental role of activity in the other major cortical population of neurons, the GABA-producing interneurons. These neurons are morphologically and functionally heterogeneous and efforts over the past decade have focused on determining the mechanisms that contribute to this diversity. It was recently discovered that 30% of all cortical interneurons arise from a relatively novel source within the ventral telencephalon, the caudal ganglionic eminence (CGE). Owing to their late birth date, these interneurons populate the cortex only after the majority of other interneurons and pyramidal cells are already in place and have started to functionally integrate. Here we demonstrate in mice that for CGE-derived reelin (Re)-positive and calretinin (Cr)-positive (but not vasoactive intestinal peptide (VIP)-positive) interneurons, activity is essential before postnatal day 3 for correct migration, and that after postnatal day 3, glutamate-mediated activity controls the development of their axons and dendrites. Furthermore, we show that the engulfment and cell motility 1 gene (Elmo1), a target of the transcription factor distal-less homeobox 1 (Dlx1), is selectively expressed in Re(+) and Cr(+) interneurons and is both necessary and sufficient for activity-dependent interneuron migration. Our findings reveal a selective requirement for activity in shaping the cortical integration of specific neuronal subtypes.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Interneuronas/citología , Interneuronas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Calbindina 2 , Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Embarazo , Células Piramidales/citología , Células Piramidales/metabolismo , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Receptores Ionotrópicos de Glutamato/metabolismo , Proteína Reelina , Proteína G de Unión al Calcio S100/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA