Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973113

RESUMEN

The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.

2.
Blood ; 131(6): 611-620, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29158362

RESUMEN

Pretargeted radioimmunotherapy (PRIT) has demonstrated remarkable efficacy targeting tumor antigens, but immunogenicity and endogenous biotin blocking may limit clinical translation. We describe a new PRIT approach for the treatment of multiple myeloma (MM) and other B-cell malignancies, for which we developed an anti-CD38-bispecific fusion protein that eliminates endogenous biotin interference and immunogenic elements. In murine xenograft models of MM and non-Hodgkin lymphoma (NHL), the CD38-bispecific construct demonstrated excellent blood clearance and tumor targeting. Dosimetry calculations showed a tumor-absorbed dose of 43.8 Gy per millicurie injected dose of 90Y, with tumor-to-normal organ dose ratios of 7:1 for liver and 15:1 for lung and kidney. In therapy studies, CD38-bispecific PRIT resulted in 100% complete remissions by day 12 in MM and NHL xenograft models, ultimately curing 80% of mice at optimal doses. In direct comparisons, efficacy of the CD38 bispecific proved equal or superior to streptavidin (SA)-biotin-based CD38-SA PRIT. Each approach cured at least 75% of mice at the highest radiation dose tested (1200 µCi), whereas at 600- and 1000-µCi doses, the bispecific outperformed the SA approach, curing 35% more mice overall (P < .004). The high efficacy of bispecific PRIT, combined with its reduced risk of immunogenicity and endogenous biotin interference, make the CD38 bispecific an attractive candidate for clinical translation. Critically, CD38 PRIT may benefit patients with unresponsive, high-risk disease because refractory disease typically retains radiation sensitivity. We posit that PRIT might not only prolong survival, but possibly cure MM and treatment-refractory NHL patients.


Asunto(s)
ADP-Ribosil Ciclasa 1/inmunología , Anticuerpos Biespecíficos/uso terapéutico , Leucemia de Células B/radioterapia , Linfoma de Células B/radioterapia , Mieloma Múltiple/radioterapia , Radioinmunoterapia/métodos , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Humanos , Leucemia de Células B/patología , Linfoma de Células B/patología , Ratones Desnudos , Terapia Molecular Dirigida , Mieloma Múltiple/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Haematologica ; 105(6): 1731-1737, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31582553

RESUMEN

Outcomes of patients with persistent high-risk leukemia or myelodysplasia prior to allogeneic hematopoietic cell transplantation are dismal. We therefore conducted a phase I trial evaluating the use of CD45-targeted radiotherapy preceding hematopoietic cell transplantation with the goal of improving outcomes for this high-risk scenario. Fifteen patients, median age 62 (range 37-76) years, were treated: ten with advanced acute myeloid leukemia, five with high-risk myelodysplastic syndrome. All patients had evidence of disease prior to treatment including nine with marrow blast counts ranging from 7-84% and six with minimal residual disease. Patients received escalating doses of yttrium-90-labeled anti-CD45 antibody followed by fludarabine and 2 Gy total body irradiation prior to human leukocyte antigen-matched, related or unrelated hematopoietic cell transplantation. Although a maximum dose of 30 Gy was delivered to the liver, no dose-limiting toxicity was observed. Therefore, the maximum-tolerated dose could not be estimated. Treatment led to complete remission in 13 patients (87%). All patients engrafted by day 28. Six patients relapsed, median of 59 (range 6-351) days, after transplantation. The 1-year estimate of relapse was 41%. Eight patients (53%) are surviving with median follow up of 1.8 (range 0.9-5.9) years. Estimated overall survival at one and two years was 66% and 46%, respectively, with progression-free survival estimated to be 46% at each time point. In conclusion, the combination of 90Y-DOTA-BC8 with an allogeneic hematopoietic cell transplantation regimen was feasible and tolerable. This approach appears promising in this high-risk leukemia/myelodysplasia patient population with active disease. (Trial registered at clinicaltrials.gov identifier: NCT01300572).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Adulto , Anciano , Humanos , Leucemia Mieloide Aguda/terapia , Persona de Mediana Edad , Síndromes Mielodisplásicos/terapia , Acondicionamiento Pretrasplante , Trasplante Homólogo , Radioisótopos de Itrio
4.
Am J Hematol ; 95(7): 775-783, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243637

RESUMEN

Radiation is the most effective treatment for localized lymphoma, but treatment of multifocal disease is limited by toxicity. Radioimmunotherapy (RIT) delivers tumoricidal radiation to multifocal sites, further augmenting response by dose-escalation. This phase II trial evaluated high-dose RIT and chemotherapy prior to autologous stem-cell transplant (ASCT) for high-risk, relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma (NHL). The primary endpoint was progression free survival (PFS). Secondary endpoints were overall survival (OS), toxicity, and tolerability. Patients age < 60 years with R/R NHL expressing CD20 were eligible. Mantle cell lymphoma (MCL) patients could proceed to transplant in first remission. Patients received I-131-tositumomab delivered at ≤25Gy to critical normal organs, followed by etoposide, cyclophosphamide and ASCT. A group of 107 patients were treated including aggressive lymphoma (N = 29), indolent lymphoma (N = 45), and MCL (N = 33). After a median follow-up of 10.1 years, the 10-year PFS for the aggressive, indolent, and MCL groups were 62%, 64%, 43% respectively. The 10-year OS for the aggressive, indolent, and MCL groups were 61%, 71%, 48% respectively. Toxicities were similar to standard conditioning regimens and non-relapse mortality at 100 days was 2.8%. Late myeloid malignancies were seen in 6% of patients. High-dose I-131-tositumomab, etoposide and cyclophosphamide followed by ASCT appeared feasible, safe, and effective in treating NHL, with estimated PFS at 10-years of 43%-64%. In light of novel cellular therapies for R/R NHL, high-dose RIT-containing regimens yield comparable efficacy and safety and could be prospectively compared.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células del Manto/mortalidad , Linfoma de Células del Manto/terapia , Adulto , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Autoinjertos , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Supervivencia sin Enfermedad , Etopósido/administración & dosificación , Etopósido/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trasplante de Células Madre , Tasa de Supervivencia
5.
Mol Pharm ; 16(4): 1694-1702, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763112

RESUMEN

The purpose of this study is to examine the melanocortin-1 receptor (MC1R) targeting and specificity of 203Pb-DOTA-GGNle-CycMSHhex in melanoma cells and tumors to facilitate its potential therapeutic application when labeled with 212Pb. The MC1R-specific targeting and imaging properties of 203Pb-DOTA-GGNle-CycMSHhex were determined on B16/F1 and B16/F10 murine melanoma cells and in B16/F1 flank melanoma-, B16/F10 flank melanoma-, and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. 203Pb-DOTA-GGNle-CycMSHhex displayed MC1R-specific binding on B16/F1 and B16/F10 melanoma cells and tumors. B16/F1 flank melanoma, B16/F10 flank melanoma, and B16/F10 pulmonary metastatic melanoma lesions could be clearly imaged by single photon emission computed tomography (SPECT) using 203Pb-DOTA-GGNle-CycMSHhex as an imaging probe. The favorable melanoma targeting and imaging properties highlighted the potential of 203Pb-DOTA-GGNle-CycMSHhex as a MC1R-targeting melanoma imaging probe and warranted the evaluation of 212Pb-DOTA-GGNle-CycMSHhex for melanoma therapy in future studies.


Asunto(s)
Lactamas/química , Radioisótopos de Plomo/química , Neoplasias Pulmonares/secundario , Melanoma Experimental/patología , Fragmentos de Péptidos/farmacocinética , alfa-MSH/metabolismo , Animales , Ciclización , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
6.
Bioconjug Chem ; 28(12): 3007-3015, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29129050

RESUMEN

The pretargeted radioimmunotherapy approach (PRIT) decouples the administration of tumor targeting monoclonal antibodies (mAbs) from that of the radiolabeled ligand. This multistep strategy allows delivery of high doses of radiation to tumor cells while minimizing nonspecific normal tissue irradiation. In this study, we evaluated the potential of pretargeted α-particle radioimmunotherapy based on the inverse electron demand Diels-Alder (IEDDA) reaction between trans-cyclooctene (TCO) and tetrazine (Tz). Two tetrazine based chelators, DOTA-Tz and TCMC-Tz, were synthesized and compared for their radiolabeling efficiency with 212Pb, radiochemical stability, and in vivo pharmacokinetics. Dosimetry was determined from pretargeted biodistribution studies. The PRIT study was carried out in LS174T tumor bearing mice pretargeted with CC49-TCO mAb. After removing unbound mAbs from the blood using two doses of clearing agent, mice were treated with various doses of (0, 2.78, 4.63, 7.40, and 2 × 2.78 MBq) of 212Pb-DOTA-Tz. 212Pb-DOTA-Tz displayed better in vivo biodistribution than 212Pb-TCMC-Tz and was selected for PRIT study. All the mouse groups receiving treatment displayed a dose dependent reduction in tumor size, while the control groups showed exponential tumor growth. Treatment with 2.78, 4.63, and 2 × 2.78 MBq of 212Pb-DOTA-Tz resulted in statistically significant improvement in median survival (26, 35, and 39 days, respectively). Groups receiving 7.40 MBq of 212Pb-DOTA-Tz and 0.55 MBq of direct labeled CC49 exhibited acute radiation associated toxicity. This study successfully demonstrated that pretargeted 212Pb α-particle therapy resulted in reduced tumor growth rates and improved survival with minimal normal tissue toxicity.


Asunto(s)
Partículas alfa/uso terapéutico , Radioinmunoterapia/métodos , Radiofármacos/química , Radiofármacos/uso terapéutico , Animales , Reacción de Cicloadición , Ciclooctanos/química , Compuestos Heterocíclicos con 1 Anillo/química , Radioisótopos de Plomo , Ratones , Radioquímica , Radiofármacos/farmacocinética , Distribución Tisular
7.
Blood ; 121(18): 3759-67, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23471305

RESUMEN

Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with ß-emitting radionuclides has been explored to reduce relapse. ß emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as (211)At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using (211)At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of (211)At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, (211)At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that (211)At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Astato/uso terapéutico , Trasplante de Médula Ósea , Leucemia/terapia , Antígenos Comunes de Leucocito/inmunología , Radioinmunoterapia/métodos , Animales , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Leucemia/mortalidad , Leucemia/patología , Leucemia/radioterapia , Ratones , Metástasis de la Neoplasia , Análisis de Supervivencia , Distribución Tisular , Resultado del Tratamiento , Células Tumorales Cultivadas
8.
Biol Blood Marrow Transplant ; 20(6): 770-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24530971

RESUMEN

Myeloablative therapy and autologous stem cell transplantation (ASCT) are underutilized in older patients with B cell non-Hodgkin (B-NHL) lymphoma. We hypothesized that myeloablative doses of (131)I-tositumomab could be augmented by concurrent fludarabine, based on preclinical data indicating synergy. Patients were ≥ 60 years of age and had high-risk, relapsed, or refractory B-NHL. Therapeutic infusions of (131)I-tositumomab were derived from individualized organ-specific absorbed dose estimates delivering ≤ 27 Gy to critical organs. Fludarabine was initiated 72 hours later followed by ASCT to define the maximally tolerated dose. Thirty-six patients with a median age of 65 years (range, 60 to 76), 2 (range, 1 to 9) prior regimens, and 33% with chemoresistant disease were treated on this trial. Dose-limiting organs included lung (30), kidney (4), and liver (2) with a median administered (131)I activity of 471 mCi (range, 260 to 1620). Fludarabine was safely escalated to 30 mg/m(2) × 7 days. Engraftment was prompt, there were no early treatment-related deaths, and 2 patients had ≥ grade 4 nonhematologic toxicities. The estimated 3-year overall survival, progression-free survival, and nonrelapse mortality were 54%, 53%, and 7%, respectively (median follow up of 3.9 years). Fludarabine up to 210 mg/m(2) can be safely delivered with myeloablative (131)I-tositumomab and ASCT in older adults with B-NHL.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/métodos , Radioisótopos de Yodo/administración & dosificación , Linfoma de Células B/terapia , Vidarabina/análogos & derivados , Factores de Edad , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Quimioradioterapia , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Radioisótopos de Yodo/farmacocinética , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/radioterapia , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/radioterapia , Linfoma de Células del Manto/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Radioinmunoterapia , Radiofármacos/uso terapéutico , Trasplante Autólogo , Vidarabina/efectos adversos , Vidarabina/uso terapéutico
9.
Biol Blood Marrow Transplant ; 20(9): 1363-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24858425

RESUMEN

We treated patients under age 50 years with iodine-131 ((131)I)-anti-CD45 antibody combined with fludarabine and 2 Gy total body irradiation to create an improved hematopoietic cell transplantation (HCT) strategy for advanced acute myeloid leukemia or high-risk myelodysplastic syndrome patients. Fifteen patients received 332 to 1561 mCi of (131)I, delivering an average of 27 Gy to bone marrow, 84 Gy to spleen, and 21 Gy to liver. Although a maximum dose of 28 Gy was delivered to the liver, no dose-limiting toxicity was observed. Marrow doses were arbitrarily capped at 43 Gy to avoid radiation-induced stromal damage; however, no graft failure or evidence of stromal damage was observed. Twelve patients (80%) developed grade II graft-versus-host disease (GVHD), 1 patient developed grade III GVHD, and no patients developed grade IV GVHD during the first 100 days after HCT. Of the 12 patients with chronic GVHD data, 10 developed chronic GVHD, generally involving the skin and mouth. Six patients (40%) are surviving after a median of 5.0 years (range, 4.2 to 8.3 years). The estimated survival at 1 year was 73% among the 15 treated patients. Eight patients relapsed, 7 of whom subsequently died. The median time to relapse among these 8 patients was 54 days (range, 26 to 1364 days). No cases of nonrelapse mortality were observed in the first year after transplantation. However, 2 patients died in remission from complications of chronic GVHD and cardiomyopathy, at 18 months and 14 months after transplantation, respectively. This study suggests that patients may tolerate myeloablative doses >28 Gy delivered to the liver using (131)I-anti-CD45 antibody in addition to standard reduced-intensity conditioning. Moreover, the arbitrary limit of 43 Gy to the marrow may be unnecessarily conservative, and continued escalation of targeted radioimmunotherapy doses may be feasible to further reduce relapse.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/terapia , Radioinmunoterapia/métodos , Acondicionamiento Pretrasplante/efectos adversos , Trasplante Homólogo/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Adulto Joven
10.
Phys Med Biol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053508

RESUMEN

PURPOSE: To investigate different dosimetric aspects of 90Y-IsoPet™ intratumoral therapy in canine soft tissue sarcomas, model the spatial spread of the gel post-injection, evaluate absorbed dose to clinical target volumes, and assess dose distributions and treatment efficacy. Methods: Six canine cases treated with 90Y-IsoPet™ for soft tissue sarcoma at the Veterinary Health Center, University of Missouri are analyzed in this retrospective study. The dogs received intratumoral IsoPet™ injections, following a grid pattern to achieve a near-uniform dose distribution in the clinical target volume. Two dosimetry methods were performed retrospectively using the Monte Carlo toolkit OpenTOPAS: imaging-based dosimetry obtained from post-injection PET/CT scans, and stylized phantom-based dosimetry modeled from the planned injection points to the gross tumor volume. For the latter, a Gaussian parameter with variable sigma was introduced to reflect the spatial spread of IsoPet™. The two methods were compared using dose-volume histograms (DVHs) and dose homogeneity, allowing an approximation of the closest sigma for the spatial spread of the gel post-injection. In addition, we compared Monte Carlo-based dosimetry with voxel S-value (VSV)-based dosimetry to investigate the dosimetric differences. Results: Imaging-based dosimetry showed differences between Monte Carlo and VSV calculations in tumor high-density areas with higher self-absorption. Stylized phantom-based dosimetry indicated a more homogeneous target dose with increasing sigma. The sigma approximation of the 90Y-IsoPet™ post-injection gel spread resulted in a median sigma of approximately 0.44 mm across all cases to reproduce the dose heterogeneity observed in Monte Carlo calculations. Conclusion: The results indicate that dose modeling based on planned injection points can serve as a first-order approximation for the delivered dose in 90Y-IsoPet™ therapy for canine soft tissue sarcomas. The dosimetry evaluation highlights the non-uniformity of absorbed doses despite the gel spread, emphasizing the importance of considering tumor dose heterogeneity in treatment evaluation. Our findings suggest that using Monte Carlo for dose calculation seems more suitable for this type of tumor where high-density areas might play an important role in dosimetry.

11.
Clin Cancer Res ; 30(2): 274-282, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37939122

RESUMEN

PURPOSE: Hematopoietic cell transplantation (HCT) has curative potential for myeloid malignancies, though many patients cannot tolerate myeloablative conditioning with high-dose chemotherapy alone or with total-body irradiation (TBI). Here we report long-term outcomes from a phase I/II study using iodine-131 (131I)-anti-CD45 antibody BC8 combined with nonmyeloablative conditioning prior to HLA-haploidentical HCT in adults with high-risk relapsed/ refractory acute myeloid or lymphoid leukemia (AML or ALL), or myelodysplastic syndrome (MDS; ClinicalTrials.gov, NCT00589316). PATIENTS AND METHODS: Patients received a tracer diagnostic dose before a therapeutic infusion of 131I-anti-CD45 to deliver escalating doses (12-26 Gy) to the dose-limiting organ. Patients subsequently received fludarabine, cyclophosphamide (CY), and 2 Gy TBI conditioning before haploidentical marrow HCT. GVHD prophylaxis was posttransplant CY plus tacrolimus and mycophenolate mofetil. RESULTS: Twenty-five patients (20 with AML, 4 ALL and 1 high-risk MDS) were treated; 8 had ≥ 5% blasts by morphology (range 9%-20%), and 7 had previously failed HCT. All 25 patients achieved a morphologic remission 28 days after HCT, with only 2 patients showing minimal residual disease (0.002-1.8%) by flow cytometry. Median time to engraftment was 15 days for neutrophils and 23 days for platelets. Point estimates for overall survival and progression-free survival were 40% and 32% at 1 year, and 24% at 2 years, respectively. Point estimates of relapse and nonrelapse mortality at 1 year were 56% and 12%, respectively. CONCLUSIONS: 131I-anti-CD45 radioimmunotherapy prior to haploidentical HCT is feasible and can be curative in some patients, including those with disease, without additional toxicity.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Acondicionamiento Pretrasplante , Adulto , Humanos , Ciclofosfamida/uso terapéutico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Radioisótopos de Yodo , Leucemia Mieloide Aguda/tratamiento farmacológico , Sobrevivientes , Acondicionamiento Pretrasplante/efectos adversos
12.
Blood ; 118(3): 703-11, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21613259

RESUMEN

Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with ß-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path length, potentially increasing the therapeutic index and making them an attractive alternative to ß-emitting radionuclides for patients with acute myeloid leukemia. Accordingly, we have used (213)Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of (213)Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5% ± 1.1% of the injected dose of (213)Bi was delivered per gram of tumor. α-imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after (213)Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a ß-emitting radionuclide ((90)Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of (213)Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 µCi of (213)Bi- or (90)Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for more than 100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of acute myeloid leukemia.


Asunto(s)
Anticuerpos/farmacología , Bismuto/farmacología , Leucemia Mieloide Aguda/radioterapia , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Radioinmunoterapia/métodos , Radioisótopos/farmacología , Animales , Biotina/análogos & derivados , Biotina/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Leucemia Mieloide Aguda/inmunología , Antígenos Comunes de Leucocito/inmunología , Ratones , Ratones Endogámicos BALB C , Compuestos Organometálicos/farmacología , Inducción de Remisión , Estreptavidina/farmacología , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancers (Basel) ; 15(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37345092

RESUMEN

The aim of this study was to evaluate the effect of linker on tumor targeting and biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex {67Cu-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 67Cu-NOTA-GGNle-CycMSHhex {67Cu-NOTA-GlyGlyNle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized and purified by HPLC. The biodistribution of 67Cu-NOTA-PEG2Nle-CycMSHhex and 67Cu-NOTA-GGNle-CycMSHhex was determined in B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of 67Cu-NOTA-PEG2Nle-CycMSHhex was further examined in B16/F10 melanoma-bearing C57 mice. 67Cu-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake than 67Cu-NOTA-GGNle-CycMSHhex at 2, 4, and 24 h post-injection. The tumor uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 27.97 ± 1.98, 24.10 ± 1.83, and 9.13 ± 1.66% ID/g at 2, 4, and 24 h post-injection, respectively. Normal organ uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was lower than 2.6% ID/g at 4 h post-injection, except for kidney uptake. The renal uptake of 67Cu-NOTA-PEG2Nle-CycMSHhex was 6.43 ± 1.31, 2.60 ± 0.79, and 0.90 ± 0.18% ID/g at 2, 4, and 24 h post-injection, respectively. 67Cu-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h post-injection. The B16/F10 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT) using 67Cu-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 4 h post-injection. The favorable tumor targeting and biodistribution properties of 67Cu-NOTA-PEG2Nle-CycMSHhex underscored its potential as an MC1R-targeted therapeutic peptide for melanoma treatment.

14.
J Nucl Med ; 64(7): 1117-1124, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268428

RESUMEN

Medical internal radiation dosimetry constitutes a fundamental aspect of diagnosis, treatment, optimization, and safety in nuclear medicine. The MIRD committee of the Society of Nuclear Medicine and Medical Imaging developed a new computational tool to support organ-level and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a standard Excel spreadsheet platform, MIRDcalc provides enhanced capabilities to facilitate radiopharmaceutical internal dosimetry. This new computational tool implements the well-established MIRD schema for internal dosimetry. The spreadsheet incorporates a significantly enhanced database comprising details for 333 radionuclides, 12 phantom reference models (International Commission on Radiological Protection), 81 source regions, and 48 target regions, along with the ability to interpolate between models for patient-specific dosimetry. The software also includes sphere models of various composition for tumor dosimetry. MIRDcalc offers several noteworthy features for organ-level dosimetry, including modeling of blood source regions and dynamic source regions defined by user input, integration of tumor tissues, error propagation, quality control checks, batch processing, and report-preparation capabilities. MIRDcalc implements an immediate, easy-to-use single-screen interface. The MIRDcalc software is available for free download (www.mirdsoft.org) and has been approved by the Society of Nuclear Medicine and Molecular Imaging.


Asunto(s)
Folletos , Radiometría , Humanos , Radiometría/métodos , Programas Informáticos , Radioisótopos , Dosificación Radioterapéutica
15.
Blood ; 116(20): 4231-9, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20702781

RESUMEN

Radioimmunotherapy (RIT) with α-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of α-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target α-emitters with short half-lives, such as bismuth-213 (²¹³Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)(4)SA fusion protein (FP), followed by a dendrimeric clearing agent and [²¹³Bi]DOTA-biotin. After 90 minutes, tumor uptake for 1F5(scFv)4SA was 16.5% ± 7.0% injected dose per gram compared with 2.3% ± .9% injected dose per gram for the control FP. Mice treated with anti-CD20 PRIT and 600 µ Ci [²¹³Bi]DOTA-biotin exhibited marked tumor growth delays compared with controls (mean tumor volume .01 ± .02 vs. 203.38 ± 83.03 mm³ after 19 days, respectively). The median survival for the 1F5(scFv)4SA group was 90 days compared with 23 days for the control FP (P < .0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with ²¹³Bi-labeled anti-CD20 PRIT.


Asunto(s)
Antígenos CD20/metabolismo , Bismuto/uso terapéutico , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/radioterapia , Neoplasia Residual/tratamiento farmacológico , Radioinmunoterapia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Antineoplásicos/inmunología , Biotina/efectos adversos , Biotina/análogos & derivados , Biotina/farmacocinética , Biotina/farmacología , Biotina/uso terapéutico , Bismuto/efectos adversos , Bismuto/farmacocinética , Bismuto/farmacología , Recuento de Células Sanguíneas , Línea Celular Tumoral , Humanos , Región Variable de Inmunoglobulina/inmunología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/fisiopatología , Pruebas de Función Hepática , Linfoma no Hodgkin/patología , Linfoma no Hodgkin/fisiopatología , Ratones , Neoplasia Residual/inmunología , Compuestos Organometálicos/efectos adversos , Compuestos Organometálicos/farmacocinética , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Radiometría , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Supervivencia , Distribución Tisular/efectos de los fármacos
16.
Cancer Biother Radiopharm ; 37(3): 161-163, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34569812

RESUMEN

Abstract A balanced approach to radiopharmaceutical dosimetry involves personalized dosimetry. Planar quantitative imaging can be practical, reliable, and relatively cost-effective. Therapy dose optimization can be achieved for the individual patient using a straightforward tracer study to determine patient-specific biokinetics at three or more imaging time points for organs that assimilate the radiopharmaceutical. Two-dimensional quantitative imaging may be supported and calibrated using a 3D SPECT/CT measurement for the dose-limiting organ at a single time point. Organ volumes are needed from CT images. Measurements require special attention for consistency in camera-to-patient distancing, region-of-interest delineation, and attenuation correction, and operators need training and experience well beyond the requirements for standard nuclear medicine scintigraphy. As with external beam therapy, reimbursement codes are needed to support treatment-planning costs. Postinfusion tumor dosimetry can be important in overall evaluation of radionuclide therapy effectiveness. Clinicians and pharmaceutical companies should recognize the value of a balanced approach to personalized internal dosimetry for maximizing therapy benefit while minimizing toxicity. Prospective clinical trials should employ quantitative dosimetry with standardized methodologies to deliver predictive paradigms and establish the efficacy of new radioimmunotherapy products.


Asunto(s)
Radiometría , Radiofármacos , Humanos , Estudios Prospectivos , Radioinmunoterapia/métodos , Radioisótopos/uso terapéutico , Radiometría/métodos , Radiofármacos/uso terapéutico
17.
Health Phys ; 122(4): 537-539, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085120

RESUMEN

ABSTRACT: Inadvertent injection of a radiopharmaceutical agent into a patient's arm tissue instead of into the appropriate blood vessel can cause the injection to infiltrate underlying tissue and produce a potentially substantial, localized irradiation to the patient's arm and skin tissue. When this type of misadministration occurs, called an extravasation, it should be recognized, mitigated, and monitored for patient health and safety. Immediate symptoms of radiopharmaceutical extravasation may include swelling, edema, pain, or numbness in the vicinity of the extravasation site; inflammation; and drainage from the site. Some infiltrations may go unnoticed until later. Pragmatic elements of radiation safety include imaging to assess the geometry, volume, and anatomic distribution of activity, collection of tissue count-rate data over retention times, calibration against known activity levels, and dosimetry to help clinicians determine whether an extravasation is severe and whether the patient should be followed for adverse tissue reactions.


Asunto(s)
Protección Radiológica , Radiofármacos , Humanos , Inyecciones , Radiometría , Radiofármacos/efectos adversos
18.
Cancer Biother Radiopharm ; 37(1): 47-55, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34762521

RESUMEN

Background: The purpose of this study was to examine the effect of 4-p-(tolyl)butyric acid as an albumin-binding (ALB) moiety on tumor targeting and biodistribution properties of 67Ga-labeled albumin binder-conjugated alpha-melanocyte-stimulating hormone peptides. Materials and Methods: DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(ALB)-Gly/GlyGly/GlyGlyGly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} were synthesized with 4-p-(tolyl)butyric acid serving as an ALB moiety. The melanocortin-1 receptor (MC1R)-binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of 67Ga-DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex was examined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 67Ga-DOTA-Lys(ALB)-GGNle-CycMSHhex {67Ga-ALB-G2} were determined on B16/F10 melanoma-bearing C57 mice. Results: The IC50 value of DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {ALB-G1, ALB-G2, ALB-G3} was 0.67 ± 0.07, 0.5 ± 0.09 and 0.51 ± 0.03 nM on B16/F10 cells, respectively. 67Ga-ALB-G2 was further evaluated as a lead peptide because of its higher tumor uptake (30.25 ± 3.24%ID/g) and lower kidney uptake (7.09 ± 2.22%ID/g) than 67Ga-ALB-G1 and 67Ga-ALB-G3 at 2 h postinjection. The B16/F10 melanoma uptake of 67Ga-ALB-G2 was 15.64 ± 4.55, 30.25 ± 3.24, 26.76 ± 3.23, and 10.71 ± 1.21%ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The B16/F10 melanoma lesions were clearly visualized by SPECT/CT using 67Ga-ALB-G2 as an imaging probe at 2 h postinjection. Conclusions: The introduction of 4-p-(tolyl)butyric acid as an ALB moiety increased the blood retention, and resulted in higher tumor/kidney ratio of 67Ga-ALB-G2 as compared with its counterpart without an albumin binder. However, the resulting high uptake of 67Ga-ALB-G2 in blood and liver need to be further reduced to facilitate its therapeutic application when replacing 67Ga with therapeutic radionuclides.


Asunto(s)
Melanoma Experimental , alfa-MSH , Albúminas , Animales , Línea Celular Tumoral , Lactamas/química , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Radiofármacos/química , Radiofármacos/farmacología , Distribución Tisular , alfa-MSH/química
19.
Health Phys ; 123(5): 343-347, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838538

RESUMEN

ABSTRACT: Extravasation during radiopharmaceutical injection may occur with a frequency of more than 10%. In these cases, radioactivity remains within tissue and deposits unintended radiation dose. Characterization of extravasations is a necessary step in accurate dosimetry, but a lack of free and publicly available tools hampers routine standardized analysis. Our objective was to improve existing extravasation characterization and dosimetry methods and to create and validate tools to facilitate standardized practical dosimetric analysis in clinical settings. Using Monte Carlo simulations, we calculated dosimetric values for sixteen nuclear medicine isotopes: 11 C, 64 Cu, 18 F, 67 Ga, 68 Ga, 123 I, 131 I, 111 In, 177 Lu, 13 N, 15 O, 82 Rb, 153 Sm, 89 Sr, 99m Tc, and 90 Y. We validated our simulation results against five logical alternative dose assessment methods. We then created three new characterization tools: a worksheet, a spreadsheet, and a web application. We assessed each tool by recalculating extravasation dosimetry results found in the literature and used each of the tools for patient cases to show clinical practicality. Average variation between our simulation results and alternative methods was 3.1%. Recalculation of published dosimetry results indicated an average error of 7.9%. Time required to use each characterization tool ranged from 1 to 5 min, and agreement between the three tools was favorable. We improved upon existing methods by creating new tools for characterization and dosimetry of radiopharmaceutical extravasation. These free and publicly available tools will enable standardized routine clinical analysis and benefit patient care, clinical follow-up, documentation, and event reporting.


Asunto(s)
Radiometría , Radiofármacos , Simulación por Computador , Humanos , Método de Montecarlo , Radiometría/métodos , Radiofármacos/efectos adversos , Programas Informáticos
20.
Sci Rep ; 12(1): 17934, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289434

RESUMEN

Targeted radiopharmaceutical therapy with alpha-particle emitters (αRPT) is advantageous in cancer treatment because the short range and high local energy deposition of alpha particles enable precise radiation delivery and efficient tumor cell killing. However, these properties create sub-organ dose deposition effects that are not easily characterized by direct gamma-ray imaging (PET or SPECT). We present a computational procedure to determine the spatial distribution of absorbed dose from alpha-emitting radionuclides in tissues using digital autoradiography activity images from an ionizing-radiation quantum imaging detector (iQID). Data from 211At-radioimmunotherapy studies for allogeneic hematopoietic cell transplantation in a canine model were used to develop these methods. Nine healthy canines were treated with 16.9-30.9 MBq 211At/mg monoclonal antibodies (mAb). Lymph node biopsies from early (2-5 h) and late (19-20 h) time points (16 total) were obtained, with 10-20 consecutive 12-µm cryosections extracted from each and imaged with an iQID device. iQID spatial activity images were registered within a 3D volume for dose-point-kernel convolution, producing dose-rate maps. The accumulated absorbed doses for high- and low-rate regions were 9 ± 4 Gy and 1.2 ± 0.8 Gy from separate dose-rate curves, respectively. We further assess uptake uniformity, co-registration with histological pathology, and requisite slice numbers to improve microscale characterization of absorbed dose inhomogeneities in αRPT.


Asunto(s)
Partículas alfa , Radiofármacos , Animales , Perros , Partículas alfa/uso terapéutico , Autorradiografía , Radiofármacos/uso terapéutico , Radiometría , Radioisótopos/uso terapéutico , Anticuerpos Monoclonales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA