RESUMEN
Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.
Asunto(s)
Astrocitoma , Neoplasias del Tronco Encefálico , Gangliósidos , Glioma , Histonas , Inmunoterapia Adoptiva , Mutación , Receptores Quiméricos de Antígenos , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/patología , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/inmunología , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/terapia , Niño , Gangliósidos/inmunología , Perfilación de la Expresión Génica , Glioma/genética , Glioma/inmunología , Glioma/patología , Glioma/terapia , Histonas/genética , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/inmunología , Neoplasias de la Médula Espinal/patología , Neoplasias de la Médula Espinal/terapiaRESUMEN
PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings. METHODS: We identified 5 individuals from 3 unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA sequencing and metabolomic data sets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data shed light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.
Asunto(s)
Aparato de Golgi , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo , Pez Cebra , Humanos , Pez Cebra/genética , Animales , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Masculino , Femenino , Niño , Fenotipo , Preescolar , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/metabolismo , Linaje , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismoRESUMEN
AIMS: Kleefstra syndrome (KS), often diagnosed in early childhood, is a rare genetic disorder due to haploinsufficiency of EHMT1 and is characterized by neuromuscular and intellectual developmental abnormalities. Although congenital heart disease (CHD) is common, the prevalence of arrhythmias and CHD subtypes in KS is unknown. METHODS AND RESULTS: Inspired by a novel case series of KS patients with atrial tachyarrhythmias in the USA, we evaluate the two largest known KS registries for arrhythmias and CHD: Radboudumc (50 patients) based on health record review at Radboud University Medical Center in the Netherlands and GenIDA (163 patients) based on worldwide surveys of patient families. Three KS patients (aged 17-25 years) presented with atrial tachyarrhythmias without manifest CHD. In the international KS registries, the median [interquartile range (IQR)] age was considerably younger: GenIDA/Radboudumc at 10/13.5 (12/13) years, respectively. Both registries had a 40% prevalence of cardiovascular abnormalities, the majority being CHD, including septal defects, vascular malformations, and valvular disease. Interestingly, 4 (8%) patients in the Radboudumc registry reported arrhythmias without CHD, including one atrial fibrillation (AF), two with supraventricular tachycardias, and one with non-sustained ventricular tachycardia. The GenIDA registry reported one patient with AF and another with chronic ectopic atrial tachycardia (AT). In total, atrial tachyarrhythmias were noted in six young KS patients (6/213 or 3%) with at least four (three AF and one AT) without structural heart disease. CONCLUSION: In addition to a high prevalence of CHD, evolving data reveal early-onset atrial tachyarrhythmias in young KS patients, including AF, even in the absence of structural heart disease.
Asunto(s)
Fibrilación Atrial , Deleción Cromosómica , Anomalías Craneofaciales , Cardiopatías Congénitas , Discapacidad Intelectual , Humanos , Preescolar , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Taquicardia , Epigénesis Genética , Cromosomas Humanos Par 9RESUMEN
Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed-one that first identifies non-wingless (WNT) and non-sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Adolescente , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/genética , Niño , Preescolar , Femenino , Proteínas Hedgehog/genética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Meduloblastoma/diagnóstico por imagen , Meduloblastoma/genética , Estudios RetrospectivosRESUMEN
OBJECTIVE: Recurrence of brain tumors in children after the initial course of treatment remains a problem. This study evaluated the efficacy and safety of reirradiation using stereotactic radiosurgery (SRS) in patients with recurrent pediatric primary brain tumors. METHODS: This IRB-approved retrospective review included pediatric patients with recurrent primary brain tumors treated at Stanford University from 2000 to 2019 using frameless SRS. Time to local failure (LF) and distant intracranial failure (DIF) were measured from the date of SRS and analyzed using competing risk analysis. Overall survival (OS) and progression-free survival (PFS) were analyzed with the Kaplan-Meier method. RESULTS: In total, 37 patients aged 2-24 years (median age 11 years at recurrence) were treated for 48 intracranial tumors. Ependymoma (38%) and medulloblastoma (22%) were the most common tumor types. The median (range) single fraction equivalent dose of SRS was 16.4 (12-24) Gy. The median (range) follow-up time was 22.9 (1.5-190) months. The median OS of all patients was 36.8 months. Eight of 40 (20%) lesions with follow-up imaging locally recurred. The 2-year cumulative incidence of LF after reirradiation with SRS was 12.8% (95% CI 4.6%-25.4%). The 2-year cumulative incidence of DIF was 25.3% (95% CI 12.9%-39.8%). The median PFS was 18 months (95% CI 8.9-44). Five (10.4%) patients developed toxicities potentially attributed to SRS, including cognitive effects and necrosis. CONCLUSIONS: Reirradiation using SRS for recurrent pediatric brain tumors appears safe with good local control. Innovations that improve overall disease control should continue because survival outcomes after relapse remain poor.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Radiocirugia , Humanos , Niño , Radiocirugia/métodos , Estudios de Seguimiento , Recurrencia Local de Neoplasia/cirugía , Neoplasias Encefálicas/cirugía , Estudios Retrospectivos , Neoplasias Cerebelosas/cirugía , Resultado del TratamientoRESUMEN
BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.
Asunto(s)
Receptor gp130 de Citocinas , Síndrome de Job , Simulación de Dinámica Molecular , Mutación Missense , Niño , Receptor gp130 de Citocinas/química , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Citocinas/genética , Citocinas/inmunología , Genes Recesivos , Humanos , Síndrome de Job/genética , Síndrome de Job/inmunología , Masculino , RNA-Seq , Transducción de Señal/genética , Transducción de Señal/inmunología , Secuenciación del ExomaRESUMEN
ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.
Asunto(s)
Alelos , Enfermedades Metabólicas/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/químicaRESUMEN
KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.
Asunto(s)
Epilepsias Mioclónicas Progresivas/genética , Canales de Potasio/genética , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Epilepsias Mioclónicas Progresivas/fisiopatología , Linaje , Fenotipo , Pez CebraRESUMEN
BACKGROUND: Paediatric low-grade glioma is the most common CNS tumour of childhood. Although overall survival is good, disease often recurs. No single universally accepted treatment exists for these patients; however, standard cytotoxic chemotherapies are generally used. We aimed to assess the activity of selumetinib, a MEK1/2 inhibitor, in these patients. METHODS: The Pediatric Brain Tumor Consortium performed a multicentre, phase 2 study in patients with paediatric low-grade glioma in 11 hospitals in the USA. Patients aged 3-21 years with a Lansky or Karnofsky performance score greater than 60 and the presence of recurrent, refractory, or progressive paediatric low-grade glioma after at least one standard therapy were eligible for inclusion. Patients were assigned to six unique strata according to histology, tumour location, NF1 status, and BRAF aberration status; herein, we report the results of strata 1 and 3. Stratum 1 comprised patients with WHO grade I pilocytic astrocytoma harbouring either one of the two most common BRAF aberrations (KIAA1549-BRAF fusion or the BRAFV600E [Val600Glu] mutation). Stratum 3 comprised patients with any neurofibromatosis type 1 (NF1)-associated paediatric low-grade glioma (WHO grades I and II). Selumetinib was provided as capsules given orally at the recommended phase 2 dose of 25 mg/m2 twice daily in 28-day courses for up to 26 courses. The primary endpoint was the proportion of patients with a stratum-specific objective response (partial response or complete response), as assessed by the local site and sustained for at least 8 weeks. All responses were reviewed centrally. All eligible patients who initiated treatment were evaluable for the activity and toxicity analyses. Although the trial is ongoing in other strata, enrolment and planned follow-up is complete for strata 1 and 3. This trial is registered with ClinicalTrials.gov, number NCT01089101. FINDINGS: Between July 25, 2013, and June 12, 2015, 25 eligible and evaluable patients were accrued to stratum 1, and between Aug 28, 2013, and June 25, 2015, 25 eligible and evaluable patients were accrued to stratum 3. In stratum 1, nine (36% [95% CI 18-57]) of 25 patients achieved a sustained partial response. The median follow-up for the 11 patients who had not had a progression event by Aug 9, 2018, was 36·40 months (IQR 21·72-45·59). In stratum 3, ten (40% [21-61]) of 25 patients achieved a sustained partial response; median follow-up was 48·60 months (IQR 39·14-51·31) for the 17 patients without a progression event by Aug 9, 2018. The most frequent grade 3 or worse adverse events were elevated creatine phosphokinase (five [10%]) and maculopapular rash (five [10%]). No treatment-realted deaths were reported. INTERPRETATION: Selumetinib is active in recurrent, refractory, or progressive pilocytic astrocytoma harbouring common BRAF aberrations and NF1-associated paediatric low-grade glioma. These results show that selumetinib could be an alternative to standard chemotherapy for these subgroups of patients, and have directly led to the development of two Children's Oncology Group phase 3 studies comparing standard chemotherapy to selumetinib in patients with newly diagnosed paediatric low-grade glioma both with and without NF1. FUNDING: National Cancer Institute Cancer Therapy Evaluation Program, the American Lebanese Syrian Associated Charities, and AstraZeneca.
Asunto(s)
Bencimidazoles/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Glioma/tratamiento farmacológico , Adolescente , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Glioma/genética , Glioma/patología , Humanos , Masculino , Clasificación del Tumor , Neoplasias Primarias Múltiples/patología , Neurofibromatosis 1/patología , Proteínas Proto-Oncogénicas B-raf/genética , Adulto JovenRESUMEN
Phacomatosis pigmentovascularis (PPV) comprises a family of rare conditions that feature vascular abnormalities and melanocytic lesions that can be solely cutaneous or multisystem in nature. Recently published work has demonstrated that both vascular and melanocytic abnormalities in PPV of the cesioflammea and cesiomarmorata subtypes can result from identical somatic mosaic activating mutations in the genes GNAQ and GNA11. Here, we present three new cases of PPV with features of the cesioflammea and/or cesiomarmorata subtypes and mosaic mutations in GNAQ or GNA11. To better understand the risk of potentially occult complications faced by such patients we additionally reviewed 176 cases published in the literature. We report the frequency of clinical findings, their patterns of co-occurrence as well as published recommendations for surveillance after diagnosis. Features assessed include: capillary malformation; dermal and ocular melanocytosis; glaucoma; limb asymmetry; venous malformations; and central nervous system (CNS) anomalies, such as ventriculomegaly and calcifications. We found that ocular findings are common in patients with phacomatosis cesioflammea and cesiomarmorata. Facial vascular involvement correlates with a higher risk of seizures (p = .0066). Our genetic results confirm the role of mosaic somatic mutations in GNAQ and GNA11 in phacomatosis cesioflammea and cesiomarmorata. Their clinical and molecular findings place these conditions on a clinical spectrum encompassing other GNAQ and GNA11 related disorders and inform recommendations for their management.
Asunto(s)
Síndromes Neurocutáneos/diagnóstico , Fenotipo , Alelos , Niño , Diagnóstico Diferencial , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Genotipo , Humanos , Lactante , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Mutación , Síndromes Neurocutáneos/genética , Piel/patología , Secuenciación del ExomaRESUMEN
There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.
Asunto(s)
Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades no Diagnosticadas/genética , Exoma , Femenino , Estudios de Seguimiento , Humanos , Masculino , Fenotipo , Enfermedades Raras/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Despite growing evidence of diagnostic yield and clinical utility of whole exome sequencing (WES) in patients with undiagnosed diseases, there remain significant cost and reimbursement barriers limiting access to such testing. The diagnostic yield and resulting clinical actions of WES for patients who previously faced insurance coverage barriers have not yet been explored. METHODS: We performed a retrospective descriptive analysis of clinical WES outcomes for patients facing insurance coverage barriers prior to clinical WES and who subsequently enrolled in the Undiagnosed Diseases Network (UDN). Clinical WES was completed as a result of participation in the UDN. Payer type, molecular diagnostic yield, and resulting clinical actions were evaluated. RESULTS: Sixty-six patients in the UDN faced insurance coverage barriers to WES at the time of enrollment (67% public payer, 26% private payer). Forty-two of 66 (64%) received insurance denial for clinician-ordered WES, 19/66 (29%) had health insurance through a payer known not to cover WES, and 5/66 (8%) had previous payer denial of other genetic tests. Clinical WES results yielded a molecular diagnosis in 23 of 66 patients (35% [78% pediatric, 65% neurologic indication]). Molecular diagnosis resulted in clinical actions in 14 of 23 patients (61%). CONCLUSIONS: These data demonstrate that a substantial proportion of patients who encountered insurance coverage barriers to WES had a clinically actionable molecular diagnosis, supporting the notion that WES has value as a covered benefit for patients who remain undiagnosed despite objective clinical findings.
Asunto(s)
Secuenciación del Exoma , Cobertura del Seguro , Enfermedades no Diagnosticadas/genética , Niño , Preescolar , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Estudios Retrospectivos , Estados UnidosRESUMEN
BACKGROUND: Young children with medulloblastoma have a poor overall survival compared with older children, due to use of radiation-sparing therapy in young children. Radiotherapy is omitted or reduced in these young patients to spare them from debilitating long-term side-effects. We aimed to estimate event-free survival and define the molecular characteristics associated with progression-free survival in young patients with medulloblastoma using a risk-stratified treatment strategy designed to defer, reduce, or delay radiation exposure. METHODS: In this multicentre, phase 2 trial, we enrolled children younger than 3 years with newly diagnosed medulloblastoma at six centres in the USA and Australia. Children aged 3-5 years with newly diagnosed, non-metastatic medulloblastoma without any high-risk features were also eligible. Eligible patients were required to start therapy within 31 days from definitive surgery, had a Lansky performance score of at least 30, and did not receive previous radiotherapy or chemotherapy. Patients were stratified postoperatively by clinical and histological criteria into low-risk, intermediate-risk, and high-risk treatment groups. All patients received identical induction chemotherapy (methotrexate, vincristine, cisplatin, and cyclophosphamide), with high-risk patients also receiving an additional five doses of vinblastine. Induction was followed by risk-adapted consolidation therapy: low-risk patients received cyclophosphamide (1500 mg/m2 on day 1), etoposide (100 mg/m2 on days 1 and 2), and carboplatin (area under the curve 5 mg/mL per min on day 2) for two 4-week cycles; intermediate-risk patients received focal radiation therapy (54 Gy with a clinical target volume of 5 mm over 6 weeks) to the tumour bed; and high-risk patients received chemotherapy with targeted intravenous topotecan (area under the curve 120-160 ng-h/mL intravenously on days 1-5) and cyclophosphamide (600 mg/m2 intravenously on days 1-5). After consolidation, all patients received maintenance chemotherapy with cyclophosphamide, topotecan, and erlotinib. The coprimary endpoints were event-free survival and patterns of methylation profiling associated with progression-free survival. Outcome and safety analyses were per protocol (all patients who received at least one dose of induction chemotherapy); biological analyses included all patients with tissue available for methylation profiling. This trial is registered with ClinicalTrials.gov, number NCT00602667, and was closed to accrual on April 19, 2017. FINDINGS: Between Nov 27, 2007, and April 19, 2017, we enrolled 81 patients with histologically confirmed medulloblastoma. Accrual to the low-risk group was suspended after an interim analysis on Dec 2, 2015, when the 1-year event-free survival was estimated to be below the stopping rule boundary. After a median follow-up of 5·5 years (IQR 2·7-7·3), 5-year event-free survival was 31·3% (95% CI 19·3-43·3) for the whole cohort, 55·3% (95% CI 33·3-77·3) in the low-risk cohort (n=23) versus 24·6% (3·6-45·6) in the intermediate-risk cohort (n=32; hazard ratio 2·50, 95% CI 1·19-5·27; p=0·016) and 16·7% (3·4-30·0) in the high-risk cohort (n=26; 3·55, 1·66-7·59; p=0·0011; overall p=0·0021). 5-year progression-free survival by methylation subgroup was 51·1% (95% CI 34·6-67·6) in the sonic hedgehog (SHH) subgroup (n=42), 8·3% (95% CI 0·0-24·0%) in the group 3 subgroup (n=24), and 13·3% (95% CI 0·0-37·6%) in the group 4 subgroup (n=10). Within the SHH subgroup, two distinct methylation subtypes were identified and named iSHH-I and iSHH-II. 5-year progression-free survival was 27·8% (95% CI 9·0-46·6; n=21) for iSHH-I and 75·4% (55·0-95·8; n=21) for iSHH-II. The most common adverse events were grade 3-4 febrile neutropenia (48 patients [59%]), neutropenia (21 [26%]), infection with neutropenia (20 [25%]), leucopenia (15 [19%]), vomiting (15 [19%]), and anorexia (13 [16%]). No treatment-related deaths occurred. INTERPRETATION: The risk-adapted approach did not improve event-free survival in young children with medulloblastoma. However, the methylation subgroup analyses showed that the SHH subgroup had improved progression-free survival compared with the group 3 subgroup. Moreover, within the SHH subgroup, the iSHH-II subtype had improved progression-free survival in the absence of radiation, intraventricular chemotherapy, or high-dose chemotherapy compared with the iSHH-I subtype. These findings support the development of a molecularly driven, risk-adapted, treatment approach in future trials in young children with medulloblastoma. FUNDING: American Lebanese Syrian Associated Charities, St Jude Children's Research Hospital, NCI Cancer Center, Alexander and Margaret Stewart Trust, Sontag Foundation, and American Association for Cancer Research.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Irradiación Craneana , Metilación de ADN , Meduloblastoma/genética , Meduloblastoma/terapia , Terapia Neoadyuvante , Factores de Edad , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Australia , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Quimioterapia Adyuvante , Preescolar , Toma de Decisiones Clínicas , Irradiación Craneana/efectos adversos , Irradiación Craneana/mortalidad , Perfilación de la Expresión Génica , Humanos , Lactante , Meduloblastoma/mortalidad , Meduloblastoma/patología , Terapia Neoadyuvante/efectos adversos , Terapia Neoadyuvante/mortalidad , Selección de Paciente , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Dosis de Radiación , Radioterapia Adyuvante , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Estados UnidosRESUMEN
The objective of this study was to investigate racial/ethnic differences in survival for pediatric high-grade glioma (HGG) and medulloblastoma in the state of California. We obtained data from the California Cancer Registry on 552 high-grade glioma patients (110 brainstem, 442 non-brainstem) and 648 medulloblastoma patients ages 0-19 years from 1988 to 2012. Using multivariate Cox proportional hazards regression, we examined the impact of individual and neighborhood characteristics on survival. Socioeconomic quintile and insurance status differed significantly by race for both diagnoses. Hispanic children with non-brainstem HGG had worse survival than non-Hispanic white children: hazard ratio (HR) 1.62; 95% confidence interval (CI) 1.24-2.11, but the difference was mitigated some by accounting for socioeconomic status (HR 1.48, CI 1.10-1.99). Racial/ethnic differences in survival exist for children with high-grade glioma, particularly Hispanic children with non-brainstem high-grade glioma, and are likely related to sociologic factors.
Asunto(s)
Neoplasias Encefálicas , Glioma , Disparidades en Atención de Salud/estadística & datos numéricos , Meduloblastoma , Adolescente , Factores de Edad , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , California/epidemiología , Niño , Preescolar , Femenino , Glioma/epidemiología , Glioma/mortalidad , Glioma/terapia , Humanos , Lactante , Recién Nacido , Masculino , Meduloblastoma/epidemiología , Meduloblastoma/mortalidad , Meduloblastoma/terapia , Estudios Retrospectivos , Adulto JovenRESUMEN
OBJECTIVE: To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. STUDY DESIGN: We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. RESULTS: Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?.05), whereas patients with PA (all treated with surgery alone) had normal CBF. ADC was decreased specifically in the hippocampus and amygdala of patients with MB and within the amygdala of patients with PA but otherwise remained normal after therapy. In the patients with tumor previously evaluated for IQ, regional ADC, but not CBF, correlated with IQ (R2?=?0.33-0.75). CONCLUSIONS: The treatment for MB, but not PA, was associated with globally reduced CBF. Treatment in both tumor types was associated with diffusion abnormalities of the mesial temporal lobe structures. Despite significant perfusion abnormalities in patients with MB, diffusion, but not perfusion, correlated with cognitive outcomes.