Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33508229

RESUMEN

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Asunto(s)
Senos Craneales/inmunología , Senos Craneales/fisiología , Duramadre/inmunología , Duramadre/fisiología , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos/líquido cefalorraquídeo , Senescencia Celular , Quimiocina CXCL12/farmacología , Duramadre/irrigación sanguínea , Femenino , Homeostasis , Humanos , Inmunidad , Masculino , Ratones Endogámicos C57BL , Fenotipo , Células del Estroma/citología , Linfocitos T/citología
2.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34320366

RESUMEN

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Remodelación Ventricular/fisiología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Miocardio/metabolismo , Troponina T/genética
3.
Cell ; 151(2): 304-19, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063122

RESUMEN

Evolution of minimal DNA tumor virus' genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ß core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.


Asunto(s)
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Infecciones por Adenovirus Humanos/virología , Línea Celular , Células Cultivadas , Cristalografía por Rayos X , Humanos , Células Vegetales/virología , Pliegue de Proteína , Nicotiana/virología
4.
Genes Dev ; 31(2): 154-171, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174210

RESUMEN

We hypothesized that basic helix-loop-helix (bHLH) MIST1 (BHLHA15) is a "scaling factor" that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural "blueprints."


Asunto(s)
Regulación de la Expresión Génica/genética , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Células Parietales Gástricas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Vías Secretoras/genética , Células Acinares/citología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Línea Celular , Expresión Génica Ectópica/efectos de los fármacos , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Células Parietales Gástricas/efectos de los fármacos , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/ultraestructura , Tamoxifeno/farmacología
5.
Blood ; 139(24): 3463-3473, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35427420

RESUMEN

The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.


Asunto(s)
Factor Xa , Protrombina , Microscopía por Crioelectrón , Factor V , Factor Va/metabolismo , Factor Xa/metabolismo , Protrombina/metabolismo , Tromboplastina/metabolismo
6.
Nat Chem Biol ; 18(1): 101-108, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931065

RESUMEN

Although the individual structures and respiratory functions of cytochromes are well studied, the structural basis for their assembly, including transport of heme for attachment, are unknown. We describe cryo-electron microscopy (cryo-EM) structures of CcsBA, a bifunctional heme transporter and cytochrome c (cyt c) synthase. Models built from the cryo-EM densities show that CcsBA is trapped with heme in two conformations, herein termed the closed and open states. The closed state has heme located solely at a transmembrane (TM) site, with a large periplasmic domain oriented such that access of heme to the cytochrome acceptor is denied. The open conformation contains two heme moieties, one in the TM-heme site and another in an external site (P-heme site). The presence of heme in the periplasmic site at the base of a chamber induces a large conformational shift that exposes the heme for reaction with apocytochrome c (apocyt c). Consistent with these structures, in vivo and in vitro cyt c synthase studies suggest a mechanism for transfer of the periplasmic heme to cytochrome.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citocromos c/biosíntesis , Hemo/metabolismo , Transporte de Proteínas
7.
Circulation ; 146(8): 623-638, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35880523

RESUMEN

BACKGROUND: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS: Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS: Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


Asunto(s)
Trasplante de Corazón , Animales , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Donantes de Tejidos
8.
Blood ; 137(22): 3137-3144, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684942

RESUMEN

Coagulation factor V (fV) is the precursor of fVa, which, together with fXa, Ca2+, and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. We solved the cryogenic electron microscopy (cryo-EM) structures of human fV and fVa at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly, but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding fXa, and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain that is responsible for prothrombin binding. Ordering of this region and full exposure of the fXa epitope emerge as necessary steps in the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of fV and fVa and pioneer the analysis of coagulation factors by cryo-EM.


Asunto(s)
Microscopía por Crioelectrón , Factor Va , Factor Va/química , Factor Va/ultraestructura , Humanos , Dominios Proteicos
9.
EMBO Rep ; 22(9): e51806, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34309175

RESUMEN

Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.


Asunto(s)
Factor de Transcripción Activador 3 , Plasticidad de la Célula , Factor de Transcripción Activador 3/genética , Animales , Ciclo Celular , Diferenciación Celular , Metaplasia/genética , Ratones
10.
Psychiatr Psychol Law ; 30(4): 514-535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484511

RESUMEN

Neurodevelopmental impairments resulting from Foetal Alcohol Spectrum Disorder (FASD) can increase the likelihood of justice system involvement. This study compared offence characteristics in young people with FASD to demographically matched controls (n = 500) in Western Australia. A novel approach (i.e. association rule mining) was adopted to uncover relationships between personal attributes and offence characteristics. For FASD participants (n = 100), file records were reviewed retrospectively. Mean age of the total sample was 15.60 years (range = 10-24), with 82% males and 88% Australian Aboriginal. After controlling for demographic factors, regression analyses showed FASD participants were more likely than controls to be charged with reckless driving (odds ratio, OR = 4.20), breach of bail/community orders (OR = 3.19), property damage (OR = 1.84), and disorderly behaviour (OR = 1.54). Overall, our findings suggest justice-involved individuals with FASD have unique offending profiles. These results have implications for sentencing, diversionary/crime prevention programs and interventions.

11.
Biophys J ; 121(4): 575-581, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032457

RESUMEN

The synovium is a multilayer connective tissue separating the intra-articular spaces of the diarthrodial joint from the extra-synovial vascular and lymphatic supply. Synovium regulates drug transport into and out of the joint, yet its material properties remain poorly characterized. Here, we measured the compressive properties (aggregate modulus, Young's modulus, and Poisson's ratio) and hydraulic permeability of synovium with a combined experimental-computational approach. A compressive aggregate modulus and Young's modulus for the solid phase of synovium were quantified from linear regression of the equilibrium confined and unconfined compressive stress upon strain, respectively (HA = 4.3 ± 2.0 kPa, Es = 2.1 ± 0.75, porcine; HA = 3.1 ± 2.0 kPa, Es = 2.8 ± 1.7, human). Poisson's ratio was estimated to be 0.39 and 0.40 for porcine and human tissue, respectively, from moduli values in a Monte Carlo simulation. To calculate hydraulic permeability, a biphasic finite element model's predictions were numerically matched to experimental data for the time-varying ramp and hold phase of a single increment of applied strain (k = 7.4 ± 4.1 × 10-15 m4/N.s, porcine; k = 7.4 ± 4.3 × 10-15 m4/N.s, human). We can use these newly measured properties to predict fluid flow gradients across the tissue in response to previously reported intra-articular pressures. These values for material constants are to our knowledge the first available measurements in synovium that are necessary to better understand drug transport in both healthy and pathological joints.


Asunto(s)
Cartílago Articular , Animales , Cartílago Articular/fisiología , Fuerza Compresiva/fisiología , Elasticidad , Humanos , Modelos Biológicos , Permeabilidad , Estrés Mecánico , Porcinos , Membrana Sinovial
12.
Plant Cell Physiol ; 63(2): 248-264, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34850209

RESUMEN

During stress, chloroplasts produce large amounts of reactive oxygen species (ROS). Chloroplasts also contain many nutrients, including 80% of a leaf's nitrogen supply. Therefore, to protect cells from photo-oxidative damage and to redistribute nutrients to sink tissues, chloroplasts are prime targets for degradation. Multiple chloroplast degradation pathways are induced by photo-oxidative stress or nutrient starvation, but the mechanisms by which damaged or senescing chloroplasts are identified, transported to the central vacuole and degraded are poorly defined. Here, we investigated the structures involved with degrading chloroplasts induced by the ROS singlet oxygen (1O2) in the Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant. Under mild 1O2 stress, most fc2 chloroplasts appeared normal, but had reduced starch content. A subset of chloroplasts was degrading, and some protruded into the central vacuole via 'blebbing' structures. A 3D electron microscopy analysis demonstrated that up to 35% of degrading chloroplasts contained such structures. While the location of a chloroplast within a cell did not affect the likelihood of its degradation, chloroplasts in spongy mesophyll cells were degraded at a higher rate than those in palisade mesophyll cells. To determine if degrading chloroplasts have unique structural characteristics, allowing them to be distinguished from healthy chloroplasts, we analyzed fc2 seedlings grown under different levels of photo-oxidative stress. A correlation was observed among chloroplast swelling, 1O2 signaling and the state of degradation. Finally, plastoglobule (PG) enzymes involved in chloroplast disassembly were upregulated while PGs increased their association with the thylakoid grana, implicating an interaction between 1O2-induced chloroplast degradation and senescence pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ferroquelatasa , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Plastidios/metabolismo , Oxígeno Singlete/metabolismo
13.
Hepatology ; 74(3): 1203-1219, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638902

RESUMEN

BACKGROUND AND AIMS: Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS: Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS: Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.


Asunto(s)
Carcinoma Hepatocelular/genética , Hígado Graso/genética , Lipoproteínas VLDL/metabolismo , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Hígado Graso/metabolismo , Lipidómica , Hígado/patología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Triglicéridos/metabolismo
14.
BMC Pediatr ; 22(1): 587, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217109

RESUMEN

BACKGROUND: Individuals with Fetal Alcohol Spectrum Disorder (FASD) are at risk of having adverse childhood experiences (ACEs), especially those with child protection and/or justice system involvement. The complex relationship between FASD and psychosocial vulnerabilities in the affected individual is an important clinical risk factor for comorbidity. This study (1) explored the ACEs and associated stressors in individuals with FASD; (2) investigated the association between ACEs and negative outcomes, i.e., justice/child protection system involvement; and (3) examined the relationship between ACEs and comorbid conditions such as mood and neurodevelopmental disorders. METHODS: Data were collected retrospectively via file review from diagnostic clinics in Western Australia. Life adversity was coded using a standardised ACEs questionnaire. A total of 211 participants (72% males) with FASD with a mean age of 11 years (range = 2-21) were included in the final sample. 70% of the total sample had been involved with the child protection system and 40% had trouble with the law. RESULTS: Exposure to drinking/substance misuse at home (70%) and domestic violence (52%) were the two most common ACEs across the total sample. In the entire cohort, 39% had four or more ACEs, indicating higher risks of poor health outcomes. Additional stressors recorded were disengagement from school (43%), transiency (19%), victims of bullying (12%), traumatic brain injury (9%) and homelessness (5%). ACEs such as drinking/substance misuse at home, emotional neglect and physical neglect were positively associated with child protection system involvement. Additionally, exposure to domestic violence was positively correlated with justice system involvement. Higher rates of life adversity in this clinical population were associated with an increased number of comorbidities. Specifically, those with FASD who had comorbidities such as attachment disorder, substance use disorder, and PTSD also reported higher ACEs scores. CONCLUSION: ACEs were common in this clinical population. Increased ACEs in this sample were associated with increased comorbidities and involvement with the child protection and/or justice system. This highlights that prevention, intervention and early diagnosis of FASD are important for at risk children to reduce the negative effects of ACEs.


Asunto(s)
Experiencias Adversas de la Infancia , Maltrato a los Niños , Trastornos del Espectro Alcohólico Fetal , Trastornos Relacionados con Sustancias , Adolescente , Adulto , Niño , Preescolar , Comorbilidad , Femenino , Trastornos del Espectro Alcohólico Fetal/epidemiología , Humanos , Masculino , Embarazo , Estudios Retrospectivos , Trastornos Relacionados con Sustancias/epidemiología , Australia Occidental/epidemiología , Adulto Joven
15.
Health Promot J Austr ; 33(3): 788-796, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34716966

RESUMEN

ISSUE ADDRESSED: Prevention approaches specific to prenatal alcohol exposure (PAE) and foetal alcohol spectrum disorder (FASD) have been identified as urgently needed in Australia, including in Aboriginal and Torres Strait Islander communities. However, very little work has aimed to describe and evaluate health promotion initiatives, especially those developed in rural and remote areas. METHODS: A series of television commercial scripts (scripts) were developed with health promotion staff at an aboriginal and Torres Strait Islander Community Controlled Health Service and piloted with 35 community members across six yarning sessions. RESULTS: Scripts evoked responses in line with two predominant themes: "Strength" and "Community resonance." This process led to the development of a four-part television and radio campaign focusing on a life course approach to prevent prenatal alcohol exposure (PAE) - "Vision," "Future," "Cycle" and "Effect." CONCLUSIONS: Intergenerational influences on PAE were key elements of scripts positively received by community members. Strengths of this work included a flexible approach to development, local aboriginal men and women coordinating the yarning sessions, and the use of local actors and familiar settings. SO WHAT?: Preventing PAE is extraordinarily complex. Initiatives that are culturally responsive and focus on collective responsibility and community action may be crucial to shifting prominent alcohol norms. Future work is necessary to determine the impact of this campaign.


Asunto(s)
Servicios de Salud del Indígena , Efectos Tardíos de la Exposición Prenatal , Australia , Servicios de Salud Comunitaria , Femenino , Humanos , Acontecimientos que Cambian la Vida , Masculino , Nativos de Hawái y Otras Islas del Pacífico , Embarazo , Efectos Tardíos de la Exposición Prenatal/prevención & control
16.
J Biol Chem ; 295(46): 15782-15793, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32938716

RESUMEN

Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía por Rayos X/métodos , Medios de Contraste/química , Microscopía Electrónica de Rastreo , Nanopartículas/química , Saccharomyces cerevisiae/ultraestructura , Tomografía por Rayos X/instrumentación , Microtomografía por Rayos X
17.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926748

RESUMEN

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Ácido Glutámico/fisiología , Células Ciliadas Auditivas Internas/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Sinapsis/fisiología , Envejecimiento/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Umbral Auditivo/fisiología , Calcio/metabolismo , Potenciales Evocados Auditivos , Exocitosis , Femenino , Dosificación de Gen , Genes Reporteros , Células Ciliadas Auditivas Externas/fisiología , Transporte Iónico , Masculino , Ratones , Ratones Noqueados , Receptores AMPA/fisiología , Recuperación de la Función , Ganglio Espiral de la Cóclea/citología , Sinapsis/ultraestructura
18.
Alcohol Clin Exp Res ; 44(6): 1284-1291, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32333805

RESUMEN

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is a diagnosis relating to neurocognitive impairments associated with prenatal alcohol exposure. A key aspect of improving FASD diagnostic processes and management is understanding the demographic and neurocognitive profile of those living with FASD. The aim of this study was to describe the demographic and neurocognitive profile of the first 199 individuals diagnosed with FASD in PATCHES Paediatrics clinics. METHODS: A retrospective cross-sectional descriptive study design was conducted with individuals diagnosed with FASD between 2013 and 2018 through a multidisciplinary team according to the Australian FASD Diagnostic Guidelines. RESULTS: Participants were primarily male 133 (66.8%) and Aboriginal Australian 147 (73.9%), aged 2 to 31 (mean 10.5), with 94 (47.3%) from remote or very remote parts of Western Australia. Participants came from low 119 (59.8%), medium 48 (24.1%), and high 32 (16.1%) socioeconomic (SE) backgrounds. Low SE background was found to be a predictor of number of sentinel facial features (Wald χ2 (1) = 4.03, p < 0.05). Most received a diagnosis of FASD with <3 sentinel features 165 (82.9%). Participants either had 6 or more 46 (23.1%), 5 44 (22.1%), 4 55 (27.6%), or 3 (27.1%) neurodevelopmental domains impaired. Executive functioning was the most commonly impaired neurodevelopmental domain 158 (79.4%), and 31 (61%) reported sleep disturbance. ADHD was the most observed comorbid condition (41.7%). CONCLUSIONS: This study improves our current understanding of neurocognitive and demographic profiles in individuals with FASD that have been clinically referred for diagnosis within Western Australia and the Northern Territory, and highlights the importance of prevention and early assessment/diagnosis as well as guidance regarding more targeted interventions. FASD affects individuals from all cultural and SE backgrounds. Individuals from middle to higher SE groups are at risk of FASD with prevention efforts needing to target these sectors of society. Suggestions for future research directions are also provided.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/epidemiología , Nativos de Hawái y Otras Islas del Pacífico , Clase Social , Población Blanca , Rendimiento Académico , Adaptación Psicológica , Adolescente , Adulto , Atención , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Niño , Preescolar , Estudios Transversales , Función Ejecutiva , Femenino , Trastornos del Espectro Alcohólico Fetal/etnología , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Trastornos del Espectro Alcohólico Fetal/psicología , Humanos , Lenguaje , Masculino , Northern Territory/epidemiología , Estudios Retrospectivos , Población Rural , Distribución por Sexo , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/fisiopatología , Australia Occidental/epidemiología , Adulto Joven
19.
J Biomech Eng ; 142(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536113

RESUMEN

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Asunto(s)
Análisis de Elementos Finitos , Membrana Sinovial , Animales , Transporte Biológico , Cartílago Articular , Difusión , Modelos Biológicos , Porcinos
20.
Proc Natl Acad Sci U S A ; 114(41): E8721-E8730, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973850

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual's susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus-positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA-Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB- strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host's robust immune response.


Asunto(s)
Cateterismo/efectos adversos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Vejiga Urinaria/microbiología , Infecciones Urinarias/microbiología , Sistema Urinario/microbiología , Adhesinas Bacterianas/metabolismo , Animales , Femenino , Fibrinógeno/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Sistema Urinario/metabolismo , Sistema Urinario/patología , Infecciones Urinarias/metabolismo , Infecciones Urinarias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA