Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 95: 249-66, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25817775

RESUMEN

Targeting TGFß/Smad signaling is an attractive strategy for several therapeutic applications given its role as a key player in many pathologies, including cancer, autoimmune diseases and fibrosis. The class of b-annelated 1,4-dihydropyridines (DHPs) represents promising novel pharmacological tools as they interfere with this pathway in a novel fashion, i.e. through induction of TGFß receptor type II degradation. In the present work, >40 rationally designed, novel DHPs were synthesized and evaluated for TGFß inhibition, substantially expanding the current understanding of the SAR profile. Key findings include that the 2-position tolerates a wide variety of polar functionalities, suggesting that this region could possibly be solvent-exposed within the (thus far) unknown cellular target. A structural explanation for pathway selectivity is provided based on a diverse series of 4″-substituted DHPs, including molecular electrostatic potential (MEP) calculations. Moreover, the absolute configuration for the chiral 4-position was determined by X-ray crystal analysis and revealed that the bioactive (+)-enantiomers are (R)-configured. Another key objective was to establish a 3D-QSAR model which turned out to be robust (r(2) = 0.93) with a good predictive power (r(2)pred = 0.69). This data further reinforces the hypothesis that this type of DHPs exerts its novel TGFß inhibitory mode of action through binding a distinct target and that unspecific activities that would derive from intrinsic properties of the ligands (e.g., lipophilicity) play a negligible role. Therefore, the present study provides a solid basis for further ligand-based design of additional analogs or DHP scaffold-derived compounds for hit-to-lead optimization, required for more comprehensive pharmacological studies in vivo.


Asunto(s)
Dihidropiridinas/química , Dihidropiridinas/farmacología , Diseño de Fármacos , Relación Estructura-Actividad Cuantitativa , Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Técnicas de Química Sintética , Dihidropiridinas/síntesis química , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Factor de Crecimiento Transformador beta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA