Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 34(15): e8818, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32342561

RESUMEN

RATIONALE: Acquisition quality in analytical science is key to obtaining optimal data from a sample. In very high-resolution mass spectrometry, quality is driven by the optimization of multiple parameters, including the use of scans and micro-scans (or transients) for performing a Fourier transformation. METHODS: Thirty-nine mass spectra of a single synthesized complex sample were acquired using various numbers of scans and micro-scans determined through a simple experimental design. An electrospray ionization source coupled with an LTQ Orbitrap XL™ mass spectrometer was used, and acquisition was performed using a single mass range. All the resulting spectra were treated in the same way to enable comparisons of assigned stoichiometric formulae between acquisitions. RESULTS: Converting the number of scans into micro-scans enhances signal quality by lowering noise and reducing artifacts. This modification also increases the number of attributed stoichiometric formulae for an equivalent acquisition time, giving access to a larger molecular diversity for the analyzed complex sample. CONCLUSIONS: For complex samples, the use of long acquisition times leads to optimal data quality, and the use of micro-scans instead of scans-only maximizes the number of attributed stoichiometric formulae.

2.
Science ; 367(6483)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165559

RESUMEN

The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA