Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 178(6): 1284-1286, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491382

RESUMEN

A developmental program affecting human face shape is shown by Greenberg et al. (2019) to hinge on the ability to distinguish a single methyl group between two histone variant isoforms and the action of the chromatin-remodeling enzyme SRCAP. This challenges researchers to link atomic structure to a morphological defect.


Asunto(s)
Cromatina , Histonas , Aminoácidos , Ensamble y Desensamble de Cromatina , Humanos , Isoformas de Proteínas
2.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633190

RESUMEN

Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs. Their sperm is negatively buoyant and fertilises on the sea floor. Hydroid cnidarians undertake broadcast spawning but their sperm properties are poorly characterised. We show that Hydractinia echinata and H. symbiolongicarpus sperm chromatin possesses higher stability than somatic chromatin, with reduced accessibility to transposase Tn5 integration and to endonucleases in vitro. In contrast, nuclear dimensions are only moderately reduced in mature Hydractinia sperm. Ectopic expression of spH2B in the background of H2B.1 knockdown results in downregulation of global transcription and cell cycle arrest in embryos, without altering their nuclear density. Taken together, SPKK-containing spH2B variants act to stabilise chromatin and silence transcription in Hydractinia sperm with only limited chromatin compaction. We suggest that spH2Bs could contribute to sperm buoyancy as a reproductive adaptation.


Asunto(s)
Histonas , Hidrozoos , Animales , Masculino , Histonas/metabolismo , Cromatina/metabolismo , Hidrozoos/genética , Semen/metabolismo , Espermatozoides/metabolismo , Protaminas/metabolismo
3.
Nucleic Acids Res ; 49(15): 8934-8946, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34352093

RESUMEN

Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A-H2B and DNA association with the G. lamblia H3-H4 were weaker than those for human H3-H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.


Asunto(s)
Microscopía por Crioelectrón , Giardia lamblia/ultraestructura , Histonas/genética , Nucleosomas/ultraestructura , Secuencia de Aminoácidos/genética , Cromatina/genética , Cromatina/ultraestructura , Giardia lamblia/genética , Histonas/ultraestructura , Humanos , Estructura Molecular , Nucleosomas/genética
4.
Genes Dev ; 29(21): 2231-43, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494712

RESUMEN

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular/genética , Células Cultivadas , Cromatina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción E2F/metabolismo , Humanos , Ratones , Proteínas del Grupo Polycomb/genética , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína/genética
5.
Epidemiol Infect ; 150: e128, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723031

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Vacunas contra la COVID-19 , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , SARS-CoV-2/genética
6.
HRB Open Res ; 5: 8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677713

RESUMEN

Exploratory analysis of cancer consortia data curated by the cBioPortal repository typically requires advanced programming skills and expertise to identify novel genomic prognostic markers that have the potential for both diagnostic and therapeutic exploitation. We developed GNOSIS (GeNomics explOrer using StatistIcal and Survival analysis in R), an R Shiny App incorporating a range of R packages enabling users to efficiently explore and visualise such clinical and genomic data. GNOSIS provides an intuitive graphical user interface and multiple tab panels supporting a range of functionalities, including data upload and initial exploration, data recoding and subsetting, data visualisations, statistical analysis, mutation analysis and, in particular, survival analysis to identify prognostic markers. GNOSIS also facilitates reproducible research by providing downloadable input logs and R scripts from each session, and so offers an excellent means of supporting clinician-researchers in developing their statistical computing skills.

7.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36290692

RESUMEN

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory-secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host's immune response to benefit its survival.

8.
Subcell Biochem ; 50: 55-78, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20012577

RESUMEN

Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair. The most well known of these is a specific serine at the extreme C-terminus of H2AX which is phosphorylated by Phosphoinositide-3-Kinase-related protein Kinases (PIKKs) to generate the gammaH2AX mark. However, recent studies have demonstrated that phosphorylation, ubiquitylation and other post-translational modifications are also crucial for function. H2AX transcript properties suggest a capability to respond to damage events. Furthermore, the biochemical properties of H2AX protein within the nucleosome structure and its distribution within chromatin also point to features linked to its role in the DNA damage response. In particular, the theoretical inter-nucleosomal spacing of H2AX and the potential implications of amino acid residues distinguishing H2AX from canonical H2A in structure and dynamics are considered in detail. This review summarises current understanding of H2AX from a structure-function perspective.


Asunto(s)
Histonas/química , Histonas/fisiología , Secuencia de Aminoácidos , Histonas/genética , Histonas/metabolismo , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
9.
PLoS One ; 16(2): e0245042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33534788

RESUMEN

Breast cancer is the leading cause of cancer related death among women. Breast cancers are generally diagnosed and treated based on clinical and histopathological features, along with subtype classification determined by the Prosigna Breast Cancer Prognostic Gene Signature Assay (also known as PAM50). Currently the copy number alteration (CNA) landscape of the tumour is not considered. We set out to examine the role of genomic instability (GI) in breast cancer survival since CNAs reflect GI and correlate with survival in other cancers. We focused on the 70% of breast cancers classified as luminal and carried out a comprehensive survival and association analysis using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data to determine whether CNA Score Quartiles derived from absolute CNA counts are associated with survival. Analysis revealed that patients diagnosed with luminal A breast cancer have a CNA landscape associated with disease specific survival, suggesting that CNA Score can provide a statistically robust prognostic factor. Furthermore, stratification of patients into subtypes based on gene expression has shown that luminal A and B cases overlap, and it is in this region we largely observe luminal A cases with reduced survival outlook. Therefore, luminal A breast cancer patients with quantitatively elevated CNA counts may benefit from more aggressive therapy. This demonstrates how individual genomic landscapes can facilitate personalisation of therapeutic interventions to optimise survival outcomes.


Asunto(s)
Neoplasias de la Mama/genética , Inestabilidad Genómica , Adulto , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Bases de Datos Factuales , Femenino , Perfilación de la Expresión Génica , Humanos , Pronóstico , Tasa de Supervivencia
10.
Curr Opin Genet Dev ; 67: 61-66, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33285512

RESUMEN

Recent studies have highlighted the potential for missense mutations in histones to act as oncogenic drivers, leading to the term 'oncohistones'. While histone proteins are highly conserved, they are encoded by multigene families. There is heterogeneity among these genes at the level of the underlying sequence, the amino acid composition of the encoded histone isoform, and the expression levels. One question that arises, therefore, is whether all histone-encoding genes function equally as oncohistones. In this review, we consider this question and explore what this means in terms of the mechanisms by which oncohistones can exert their effects in chromatin.


Asunto(s)
Carcinogénesis/genética , Histonas/genética , Neoplasias/genética , Oncogenes/genética , Cromatina/genética , Cromosomas/genética , Código de Histonas/genética , Humanos , Mutación Missense/genética , Isoformas de Proteínas/genética
11.
Mol Cell Biol ; 27(11): 4037-48, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17387148

RESUMEN

Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes. We find that alterations to histone proteins, especially the histone tails and vicinity of the histone H3 alphaN helix, can affect these processes differently, suggesting that they are mechanistically distinct. This raises the possibility that modifications to histone proteins may provide a means of fine-tuning specific aspects of the dynamic properties of nucleosomes to the context in which they are located.


Asunto(s)
Histonas/química , Histonas/metabolismo , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Alanina/metabolismo , Animales , ADN/química , ADN/metabolismo , Dimerización , Histonas/genética , Modelos Moleculares , Mutación Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
12.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570834

RESUMEN

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/genética , Reparación del ADN , ADN/genética , Subunidad 1 del Complejo Mediador/metabolismo , Transcripción Genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
13.
Curr Opin Genet Dev ; 14(2): 165-73, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15196463

RESUMEN

ATP-dependent chromatin remodelling enzymes act to alter chromatin structure during gene regulation. Studies of the ATPase motors that drive these enzymes support the notion that they function as ATP-dependent DNA translocases with limited processivity. The action of these enzymes on nucleosomes results in the alteration of nucleosome positioning and structure. Recent studies have shown that ATP-dependent chromatin remodelling can also either remove or exchange histone dimers between nucleosomes. This provides a new means by which the incorporation of histone variants can be directed. Additional observations support roles for ATP-dependent remodelling enzymes throughout the transcription cycle.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Histonas/fisiología , Animales , Dimerización , Humanos , Nucleosomas/fisiología
14.
Nucleic Acids Res ; 34(15): 4160-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16935875

RESUMEN

Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA-protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases.


Asunto(s)
Adenosina Trifosfatasas/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química
15.
Nucleic Acids Res ; 34(10): 2887-905, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16738128

RESUMEN

The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/clasificación , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/clasificación , Secuencias de Aminoácidos , Animales , Evolución Molecular , Genómica , Modelos Moleculares , Familia de Multigenes , Filogenia , Alineación de Secuencia , Análisis de Secuencia de Proteína
16.
Nat Commun ; 9(1): 1535, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670105

RESUMEN

Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.


Asunto(s)
Dinoflagelados/metabolismo , Dinoflagelados/virología , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas Virales/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional , ADN/química , Genoma , Microscopía Fluorescente , Fenotipo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas Virales/genética
17.
Mol Cell Biol ; 23(21): 7767-79, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14560021

RESUMEN

The fundamental subunit of chromatin, the nucleosome, is not a static entity but can move along DNA via either thermal or enzyme-driven movements. Here we have monitored the movements of nucleosomes following deposition at well-defined locations on mouse mammary tumor virus promoter DNA. We found that the sites to which nucleosomes are deposited during chromatin assembly differ from those favored during thermal equilibration. Taking advantage of this, we were able to track the movement of nucleosomes over 156 bp and found that this proceeds via intermediate positions spaced between 46 and 62 bp. The remodeling enzyme ISWI was found to direct the movement of nucleosomes to sites related to those observed during thermal mobilization. In contrast, nucleosome mobilization driven by the SWI/SNF and RSC complexes were found to drive nucleosomes towards sites up to 51 bp beyond DNA ends, with little respect for the sites favored during thermal repositioning. The dynamic properties of nucleosomes we describe are likely to influence their role in gene regulation.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN/metabolismo , Nucleosomas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Histonas/metabolismo , Sustancias Macromoleculares , Virus del Tumor Mamario del Ratón/genética , Ratones , Regiones Promotoras Genéticas , Temperatura , Factores de Transcripción/metabolismo
18.
Mol Cell Biol ; 23(6): 1935-45, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12612068

RESUMEN

The ISWI proteins form the catalytic core of a subset of ATP-dependent chromatin-remodeling activities. Here, we studied the interaction of the ISWI protein with nucleosomal substrates. We found that the ability of nucleic acids to bind and stimulate the ATPase activity of ISWI depends on length. We also found that ISWI is able to displace triplex-forming oligonucleotides efficiently when they are introduced at sites close to a nucleosome but successively less efficiently 30 to 60 bp from its edge. The ability of ISWI to direct triplex displacement was specifically impeded by the introduction of 5- or 10-bp gaps in the 3'-5' strand between the triplex and the nucleosome. In combination, these observations suggest that ISWI is a 3'-5'-strand-specific, ATP-dependent DNA translocase that may be capable of forcing DNA over the surface of nucleosomes.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Cromatina/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Adenosina Trifosfato/fisiología , Secuencias de Aminoácidos , Animales , Unión Competitiva , Catálisis , ADN/metabolismo , ADN/farmacología , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/farmacología , Activación Enzimática/efectos de los fármacos , Sustancias Macromoleculares , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , Oligonucleótidos/metabolismo , Unión Proteica , Especificidad por Sustrato
19.
Biochem Soc Symp ; (73): 109-19, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16626292

RESUMEN

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


Asunto(s)
Nucleosomas/genética , Nucleosomas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Variación Genética , Histonas/genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
20.
BMC Biophys ; 8: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25815164

RESUMEN

The cell contains highly dynamic structures exploiting physical principles of self-organisation at the mesoscale (100 nm to 10 µm). Examples include non-membrane bound cytoplasmic bodies, cytoskeleton-based motor networks and multi-scale chromatin organisation. The challenges of mesoscale self-organisation were discussed at a CECAM workshop in July 2014. Biologists need approaches to observe highly dynamic, low affinity, low specificity associations and to perturb single structures, while biological physicists and biomathematicians need to work closely with biologists to build and validate quantitative models. A table of terminology is included to facilitate multidisciplinary efforts to reveal the richness and diversity of mesoscale cell biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA