Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 30(17): 1457-62, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21638405

RESUMEN

A novel route towards the synthesis of well-defined linear-dendronized diblock copolymers is reported. Precursor alkyne containing diblock copolymers were modified in a highly efficient cycloaddition reaction with dendritic azides of different generation. The dendronization has been shown to be selective and could be driven to completion under ambient conditions. The phase separation of such dendronized diblock copolymers was investigated in dependence of the generation size being attached. Compared to a linear-linear diblock copolymer as starting material the dendronization yielded in a pronounced phase separation. The nanoscaled features observed in thin films strongly depended on the dendron size and a variety of morphologies could be identified. Hence, the unique combination of controlled radical polymerization and click chemistry allows for the triggering of structured surfaces in the nanometer-regime.

2.
ACS Omega ; 3(12): 16706-16713, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458300

RESUMEN

Silicon (Si) and composites thereof, preferably with carbon (C), show favorable lithium (Li) storage properties at low potential, and thus hold promise for application as anode active materials in the energy storage area. However, the high theoretical specific capacity of Si afforded by the alloying reaction with Li involves many challenges. In this article, we report the preparation of small-size Si particles with a turbostratic carbon shell from a polymer precoated powder material. Galvanostatic charge/discharge experiments conducted on electrodes with practical loadings resulted in much improved capacity retention and kinetics for the Si/C composite particles compared to physical mixtures of pristine Si particles and carbon black, emphasizing the positive effect that the core-shell-type morphology has on the cycling performance. Using in situ differential electrochemical mass spectrometry, pressure, and acoustic emission measurements, we gain insights into the gassing behavior, the bulk volume expansion, and the mechanical degradation of the Si/C composite-containing electrodes. Taken together, our research data demonstrate that some of the problems of high-content Si anodes can be mitigated by carbon coating. Nonetheless, continuous electrolyte decomposition, particle fracture, and electrode restructuring due to the large volume changes during battery operation (here, ∼170% in the voltage range of 600-30 mV vs Li+/Li) remain as serious hurdles toward practical implementation.

3.
Langmuir ; 24(17): 9392-400, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18646782

RESUMEN

Stable thin films of an aromatic-aliphatic hyperbranched polyester with hydroxyl groups were fabricated on silicon substrates using electron beam irradiation and a grafting-to approach. We present a detailed study on the influence of the dose, dose rate, and temperature on the film properties and degradation behavior of the polyester immobilized by electron beam irradiation. A patterned polyester film was prepared on the substrate using a masking technique. In the second part of this work, we report on a method for the strong binding of the hyperbranched polyester onto the surface of an "activated" silicon substrate without using any coupling agent. The results are compared with the grafting-to of the hydroxyl-terminated polyester using thin PGMA anchoring layers ( Reichelt et al. Macromol. Symp. 2007, 254, 240- 247 ). The optimal conditions and mechanism of the anchoring procedures were investigated. The surface and film properties of all immobilized polymer films were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), electrokinetic measurements, contact-angle measurements by drop-shape analysis, spectroscopic and imaging ellipsometry, and infrared spectroscopy. It is shown that all immobilization methods can be optimized in such a way that the polymer surface properties remain unchanged compared to those of nongrafted polyesters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA