Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203639

RESUMEN

Retained hemothorax (RH) is a commonly encountered and potentially severe complication of intrapleural bleeding that can organize with lung restriction. Early surgical intervention and intrapleural fibrinolytic therapy have been advocated. However, the lack of a reliable, cost-effective model amenable to interventional testing has hampered our understanding of the role of pharmacological interventions in RH management. Here, we report the development of a new RH model in rabbits. RH was induced by sequential administration of up to three doses of recalcified citrated homologous rabbit donor blood plus thrombin via a chest tube. RH at 4, 7, and 10 days post-induction (RH4, RH7, and RH10, respectively) was characterized by clot retention, intrapleural organization, and increased pleural rind, similar to that of clinical RH. Clinical imaging techniques such as ultrasonography and computed tomography (CT) revealed the dynamic formation and resorption of intrapleural clots over time and the resulting lung restriction. RH7 and RH10 were evaluated in young (3 mo) animals of both sexes. The RH7 recapitulated the most clinically relevant RH attributes; therefore, we used this model further to evaluate the effect of age on RH development. Sanguineous pleural fluids (PFs) in the model were generally small and variably detected among different models. The rabbit model PFs exhibited a proinflammatory response reminiscent of human hemothorax PFs. Overall, RH7 results in the consistent formation of durable intrapleural clots, pleural adhesions, pleural thickening, and lung restriction. Protracted chest tube placement over 7 d was achieved, enabling direct intrapleural access for sampling and treatment. The model, particularly RH7, is amenable to testing new intrapleural pharmacologic interventions, including iterations of currently used empirically dosed agents or new candidates designed to safely and more effectively clear RH.


Asunto(s)
Hemotórax , Lagomorpha , Animales , Femenino , Masculino , Humanos , Conejos , Hemotórax/diagnóstico por imagen , Hemotórax/etiología , Pleura/diagnóstico por imagen , Tórax , Donantes de Sangre
2.
Exp Brain Res ; 237(12): 3419-3430, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31734788

RESUMEN

Plasminogen activator inhibitor 1 (PAI-1), which is elevated in numerous disease states, has been implicated as a stress-related protein involved in the pathogenesis of depression. We measured PAI-1 in the plasma of healthy and depressed individuals and assessed plasminogen activator (PA) expression and regulation by PAI-1 in cultured normal human astrocytes (NHA). Elevated plasma PAI-1 levels were found in depressed patients. Brain tissues from depressed individuals also showed stronger expression of hippocampal PAI-1 by confocal imaging in comparison to healthy individuals. Using a lipopolysaccharide-induced inflammatory model of depression in mice, we measured PAI-1 in murine plasma and brain, by ELISA and immunohistochemistry, respectively. Similar elevations were seen in plasma but not in brain homogenates of mice exposed to LPS. We further correlated the findings with depressive behavior. Ex vivo experiments with NHA treated with proinflammatory cytokines implicated in the pathogenesis of depression showed increased PAI-1 expression. Furthermore, these studies suggest that urokinase-type plasminogen activator may serve as an astrocyte PA reservoir, able to promote cleavage of brain-derived neurotrophic factor (BDNF) during stress or inflammation. In summary, our findings confirm that derangements of PAI-1 variably occur in the brain in association with the depressive phenotype. These derangements may impede the availability of active, mature (m)BDNF and thereby promote a depressive phenotype.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Serpina E2/metabolismo , Animales , Células Cultivadas , Depresión/sangre , Trastorno Depresivo Mayor/sangre , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Inhibidor 1 de Activador Plasminogénico/sangre , Serpina E2/sangre
3.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L54-L68, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28860148

RESUMEN

Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (179RHRGGS184→179AAAAAA184) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with Ser195Ala substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.


Asunto(s)
Fibrinólisis/efectos de los fármacos , Fibrinolíticos/farmacología , Inhibidor 1 de Activador Plasminogénico/química , Enfermedades Pleurales/tratamiento farmacológico , Tetraciclina/toxicidad , Terapia Trombolítica/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Inhibidor 1 de Activador Plasminogénico/metabolismo , Enfermedades Pleurales/inducido químicamente , Inhibidores de la Síntesis de la Proteína/toxicidad , Conejos
4.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L757-L768, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29345198

RESUMEN

Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.


Asunto(s)
Fibrina/metabolismo , Enfermedades Pleurales/fisiopatología , Animales , Humanos , Enfermedades Pleurales/metabolismo
5.
Drug Dev Ind Pharm ; 44(2): 184-198, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28835128

RESUMEN

A caveolin-1 scaffolding domain, CSP7, is a newly developed peptide for the treatment of idiopathic pulmonary fibrosis. To develop a CSP7 formulation for further use we have obtained, characterized and compared a number of lyophilized formulations of CSP7 trifluoroacetate with DPBS and in combination with excipients (mannitol and lactose at molar ratios 1:5, 70 and 140). CSP7 trifluoroacetate was stable (>95%) in solution at 5 and 25 °C for up to 48 h and tolerated at least 5 freeze/thaw cycles. Lyophilized cakes of CSP7 trifluoroacetate with excipients were stable (>96%) for up to 4 weeks at room temperature (RT), and retained more than 98% of the CSP7 trifluoroacetate in the solution at 8 h after reconstitution at RT. The lyophilized CSP7 formulations were stable for up to 10 months at 5 °C protected from moisture. Exposure of the lyophilized cakes of CSP7 to 75% relative humidity (RH) resulted in an increase in the absorbed moisture, promoted crystallization of the excipients and induced reversible formation of CSP7 aggregates. Increased molar ratio of mannitol slightly affected formation of the aggregates. In contrast, lactose significantly decreased (up to 20 times) aggregate formation with apparent saturation at the molar ratio of 1:70. The possible mechanisms of stabilization of CSP7 trifluoroacetate in solid state by lactose include physical state of the bulking agent and the interactions between lactose and CSP7 trifluoroacetate (e.g. formation of a Schiff base with the N-terminal amino group of CSP7). Finally, CSP7 trifluoroacetate exhibited excellent stability during nebulization of formulations containing mannitol or lactose.


Asunto(s)
Química Farmacéutica/métodos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Administración por Inhalación , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Estabilidad de Medicamentos , Liofilización , Humedad , Lactosa/química , Manitol/química , Ácido Trifluoroacético/química
6.
J Drug Deliv Sci Technol ; 48: 19-27, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30123328

RESUMEN

Single-chain tissue-type plasminogen activator (sctPA) and single-chain urokinase plasminogen activator (scuPA) have attracted interest as enzymes for the treatment of inhalational smoke-induced acute lung injury (ISALI). In this study, the pulmonary delivery of commercial human sctPA and lyophilized scuPA and their reconstituted solution forms were demonstrated using vibrating mesh nebulizers (Aeroneb® Pro (active) and EZ Breathe® (passive)). Both the Aeroneb® Pro and EZ Breathe® vibrating mesh nebulizers produced atomized droplets of protein solution of similar size of less than about 5 µm, which is appropriate for pulmonary delivery. Enzymatic activities of scuPA and of sctPA were determined after nebulization and both remained stable (88.0% and 93.9%). Additionally, the enzymatic activities of sctPA and tcuPA were not significantly affected by excipients, lyophilization or reconstitution conditions. The results of these studies support further development of inhaled formulations of fibrinolysins for delivery to the lungs following smoke-induced acute pulmonary injury.

7.
Clin Pulm Med ; 24(4): 163-169, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29081644

RESUMEN

Complicated pleural effusions and empyema with loculation and failed drainage are common clinical problems. In adults, intrapleural fibrinolytic therapy is commonly used with variable results and therapy remains empiric. Despite the intrapleural use of various plasminogen activators; fibrinolysins, for about sixty years, there is no clear consensus about which agent is most effective. Emerging evidence demonstrates that intrapleural administration of plasminogen activators is subject to rapid inhibition by plasminogen activator inhibitor-1 and that processing of fibrinolysins is importantly influenced by other factors including the levels and quality of pleural fluid DNA. Current therapy for loculation that accompanies pleural infections also includes surgery, which is invasive and for which patient selection can be problematic. Most of the clinical literature published to date has used flat dosing of intrapleural fibrinolytic therapy in all subjects but little is known about how that strategy influences the processing of the administered fibrinolysin or how this influences outcomes. We developed a new test of pleural fluids ex vivo, which is called the Fibrinolytic Potential or FP, in which a dose of a fibrinolysin is added to pleural fluids ex vivo after which the fibrinolytic activity is measured and normalized to baseline levels. Testing in preclinical and clinical empyema fluids reveals a wide range of responses, indicating that individual patients will likely respond differently to flat dosing of fibrinolysins. The test remains under development but is envisioned as a guide for dosing of these agents, representing a novel candidate approach to personalization of intrapleural fibrinolytic therapy.

8.
J Biol Chem ; 290(15): 9428-41, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25648892

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically "normal" lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.


Asunto(s)
Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Alveolos Pulmonares/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Apoptosis/genética , Bleomicina , Western Blotting , Proliferación Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Epiteliales/patología , Fibroblastos/patología , Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Músculo Liso/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Alveolos Pulmonares/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L389-99, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27343192

RESUMEN

The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP.


Asunto(s)
Empiema Pleural/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Infecciones por Pasteurella/tratamiento farmacológico , Infecciones Neumocócicas/tratamiento farmacológico , Terapia Trombolítica , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Plasminógeno de Tipo Uroquinasa/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Empiema Pleural/diagnóstico por imagen , Empiema Pleural/microbiología , Femenino , Humanos , Infecciones por Pasteurella/microbiología , Pasteurella multocida/fisiología , Pleura/diagnóstico por imagen , Pleura/microbiología , Pleura/patología , Infecciones Neumocócicas/microbiología , Conejos , Proteínas Recombinantes/administración & dosificación , Streptococcus pneumoniae/fisiología
10.
Am J Respir Cell Mol Biol ; 52(4): 429-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25140386

RESUMEN

Endogenous active plasminogen activator inhibitor 1 (PAI-1) was targeted in vivo with monoclonal antibodies (mAbs) that redirect its reaction with proteinases to the substrate branch. mAbs were used as an adjunct to prourokinase (single-chain [sc] urokinase [uPA]) intrapleural fibrinolytic therapy (IPFT) of tetracycline-induced pleural injury in rabbits. Outcomes of scuPA IPFT (0.25 or 0.0625 mg/kg) with 0.5 mg/kg of mouse IgG or mAbs (MA-33H1F7 and MA-8H9D4) were assessed at 24 hours. Pleural fluid (PF) was collected at 0, 10, 20, and 40 minutes and 24 hours after IPFT and analyzed for plasminogen activating (PA), uPA, fibrinolytic activities, levels of total plasmin/plasminogen, α-macroglobulin (αM), mAbs/IgG antigens, free active uPA, and αM/uPA complexes. Anti-PAI-1 mAbs, but not mouse IgG, delivered with an eightfold reduction in the minimal effective dose of scuPA (from 0.5 to 0.0625 mg/kg), improved the outcome of IPFT (P < 0.05). mAbs and IgG were detectable in PFs at 24 hours. Compared with identical doses of scuPA alone or with IgG, treatment with scuPA and anti-PAI-1 mAbs generated higher PF uPA amidolytic and PA activities, faster formation of αM/uPA complexes, and slower uPA inactivation. However, PAI-1 targeting did not significantly affect intrapleural fibrinolytic activity or levels of total plasmin/plasminogen and αM antigens. Targeting PAI-1 did not induce bleeding, and rendered otherwise ineffective doses of scuPA able to improve outcomes in tetracycline-induced pleural injury. PAI-1-neutralizing mAbs improved IPFT by increasing the durability of intrapleural PA activity. These results suggest a novel, well-tolerated IPFT strategy that is tractable for clinical development.


Asunto(s)
Fibrinolíticos/farmacología , Enfermedades Pleurales/tratamiento farmacológico , Inhibidores de Serina Proteinasa/farmacología , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Fibrinolíticos/uso terapéutico , Inhibidor 1 de Activador Plasminogénico/inmunología , Enfermedades Pleurales/inducido químicamente , Conejos , Inhibidores de Serina Proteinasa/uso terapéutico , Tetraciclina
11.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L562-72, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26163512

RESUMEN

The time required for the effective clearance of pleural adhesions/organization after intrapleural fibrinolytic therapy (IPFT) is unknown. Chest ultrasonography and computed tomography (CT) were used to assess the efficacy of IPFT in a rabbit model of tetracycline-induced pleural injury, treated with single-chain (sc) urokinase plasminogen activators (scuPAs) or tissue PAs (sctPA). IPFT with sctPA (0.145 mg/kg; n = 10) and scuPA (0.5 mg/kg; n = 12) was monitored by serial ultrasonography alone (n = 12) or alongside CT scanning (n = 10). IPFT efficacy was assessed with gross lung injury scores (GLIS) and ultrasonography scores (USS). Pleural fluids withdrawn at 0-240 min and 24 h after IPFT were assayed for PA and fibrinolytic activities, α-macroglobulin/fibrinolysin complexes, and active PA inhibitor 1 (PAI-1). scuPA and sctPA generated comparable steady-state fibrinolytic activities by 20 min. PA activity in the scuPA group decreased slower than the sctPA group (kobs = 0.016 and 0.042 min(-1)). Significant amounts of bioactive uPA/α-macroglobulin (but not tPA; P < 0.05) complexes accumulated at 0-40 min after IPFT. Despite the differences in intrapleural processing, IPFT with either fibrinolysin was effective (GLIS ≤ 10) in animals imaged with ultrasonography only. USS correlated well with postmortem GLIS (r(2) = 0.85) and confirmed relatively slow intrapleural fibrinolysis after IPFT, which coincided with effective clearance of adhesions/organization at 4-8 h. CT scanning was associated with less effective (GLIS > 10) IPFT and higher levels of active PAI-1 at 24 h following therapy. We concluded that intrapleural fibrinolysis in tetracycline-induced pleural injury in rabbits is relatively slow (4-8 h). In CT-scanned animals, elevated PAI-1 activity (possibly radiation induced) reduced the efficacy of IPFT, buttressing the major impact of active PAI-1 on IPFT outcomes.


Asunto(s)
Fibrinolíticos/farmacología , Lesión Pulmonar/patología , Adherencias Tisulares/tratamiento farmacológico , Animales , Evaluación Preclínica de Medicamentos , Femenino , Fibrinolíticos/uso terapéutico , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Conejos , Tetraciclina , Adherencias Tisulares/inducido químicamente
12.
Am J Respir Cell Mol Biol ; 50(2): 316-27, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24024554

RESUMEN

Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1(-/-) mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1(-/-) mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1(-/-) mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial-mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1(-/-) mice, D-dimer and thrombin-antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction.


Asunto(s)
Coagulación Sanguínea/fisiología , Epitelio/metabolismo , Trastornos Hemorrágicos/metabolismo , Lesión Pulmonar/genética , Inhibidor 1 de Activador Plasminogénico/deficiencia , Pleura/patología , Animales , Bleomicina/farmacología , Fibrina/metabolismo , Fibrina/farmacología , Humanos , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Hollín/farmacología , Trombina/metabolismo , Trombina/farmacología
13.
J Am Chem Soc ; 136(12): 4565-74, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24575817

RESUMEN

The marine Streptomyces sp. CNQ-617 produces two diastereomers, marineosins A and B. These are structurally related to alkyl prodiginines, but with a more complex cyclization and an unusual spiroaminal skeleton. We report the identification of the mar biosynthetic gene cluster and demonstrate production of marineosins through heterologous expression in a S. venezuelae host named JND2. The mar cluster shares the same gene organization and has high homology to the genes of the red cluster (which directs the biosynthesis of undecylprodiginine) but contains an additional gene, named marA. Replacement of marA in the JND2 strain leads to the accumulation of premarineosin, which is identical to marineosin with the exception that the middle pyrrole (Ring B) has not been reduced. The final step of the marineosin pathway is thus a MarA catalyzed reduction of this ring. Replacement of marG (a homologue of redG that directs undecylprodiginine cyclization to give streptorubin B) in the JND2 strain leads to the loss of all spiroaminal products and the accumulation of 23-hydroxyundecylprodiginine and a shunt product, 23-ketoundecylprodiginine. MarG thus catalyzes the penultimate step of the marineosin pathway catalyzing conversion of 23-hydroxyundecylprodiginine to premarineosin. The preceding steps of the biosynthetic marineosin pathway likely mirror that in the red-directed biosynthetic process, with the exception of the introduction of the hydroxyl functionality required for spiroaminal formation. This work presents the first experimentally supported scheme for biosynthesis of marineosin and provides a new biologically active molecule, premarineosin.


Asunto(s)
Antimaláricos/metabolismo , Familia de Multigenes , Pirroles/metabolismo , Compuestos de Espiro/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Antimaláricos/farmacología , Clonación Molecular , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Oxidación-Reducción , Plasmodium falciparum/efectos de los fármacos , Prodigiosina/análogos & derivados , Prodigiosina/metabolismo , Pirroles/farmacología , Análisis de Secuencia , Homología de Secuencia de Ácido Nucleico , Compuestos de Espiro/farmacología
14.
Am J Respir Cell Mol Biol ; 48(1): 44-52, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23002099

RESUMEN

Elevated concentrations of plasminogen activator inhibitor-1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, ß-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40-80 and 200-400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10-15 nM in control animals to 20-40 nM in hPAI-1-overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/genética , Pleura/lesiones , Adenoviridae/genética , Animales , Modelos Animales de Enfermedad , Epitelio/virología , Expresión Génica , Humanos , Operón Lac , Pleura/efectos de los fármacos , Pleura/metabolismo , Pleura/patología , Conejos , Proteínas Recombinantes/genética , Tetraciclina/toxicidad , Terapia Trombolítica/métodos , Transducción Genética
15.
Biochemistry ; 52(27): 4697-709, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23734661

RESUMEN

Plasminogen activator inhibitor 1 (PAI-1) levels are elevated in a number of life-threatening conditions and often correlate with unfavorable outcomes. Spontaneous inactivation due to active to latent transition limits PAI-1 activity in vivo. While endogenous vitronectin (Vn) stabilizes PAI-1 by 1.5-2.0-fold, further stabilization occurs in a "molecular sandwich" complex (MSC) in which a ligand that restricts the exposed reactive center loop is bound to PAI-1/Vn. The effects of S195A two-chain urokinase (tcuPA) and Vn on inactivation of wild-type (wt) glycosylated (Gl-PAI-1), nonglycosylated (rPAI-1), and nonglycosylated Q123K PAI-1 (lacks Vn binding) forms were studied. S195A tcuPA decreased the rate constant (kL) for spontaneous inactivation at 37 °C for rPAI-1, Q123K, and Gl-PAI-1 by 6.7-, 3.4-, and 7.8-fold, respectively, and both S195A tcuPA and Vn by 66.7-, 5.5-, and 103.3-fold, respectively. Analysis of the temperature dependences of kL revealed a synergistic increase in the Gibbs free activation energy for spontaneous inactivation of wt Gl-PAI-1 and rPAI-1 in MSC from 99.8 and 96.1 to 111.3 and 107.0 kJ/mol, respectively, due to an increase in the activation enthalpy and a decrease in the activation entropy. Anti-PAI-1 monoclonal antibodies (mAbs) competing with proteinase also stabilize PAI-1/Vn. The rate of inhibition of target proteinases by MSCs, with a stoichiometry close to unity, was limited by the dissociation (k = 10(-4) to 10(-3) s(-1)) of S195A tcuPA or mAb. The stabilization of PAI-1 in MSCs in vivo may potentiate uncontrolled thrombosis or extravascular fibrin deposition, suggesting a new paradigm for using PAI-1 inhibitors and novel potential targets for therapy.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/química , Amidas/química , Anticuerpos Monoclonales/inmunología , Electroforesis en Gel de Poliacrilamida , Glicosilación , Cinética , Modelos Moleculares , Inhibidor 1 de Activador Plasminogénico/inmunología , Estabilidad Proteica , Termodinámica
16.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L682-92, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23997178

RESUMEN

Intrapleural processing of prourokinase (scuPA) in tetracycline (TCN)-induced pleural injury in rabbits was evaluated to better understand the mechanisms governing successful scuPA-based intrapleural fibrinolytic therapy (IPFT), capable of clearing pleural adhesions in this model. Pleural fluid (PF) was withdrawn 0-80 min and 24 h after IPFT with scuPA (0-0.5 mg/kg), and activities of free urokinase (uPA), plasminogen activator inhibitor-1 (PAI-1), and uPA complexed with α-macroglobulin (αM) were assessed. Similar analyses were performed using PFs from patients with empyema, parapneumonic, and malignant pleural effusions. The peak of uPA activity (5-40 min) reciprocally correlated with the dose of intrapleural scuPA. Endogenous active PAI-1 (10-20 nM) decreased the rate of intrapleural scuPA activation. The slow step of intrapleural inactivation of free uPA (t1/2(ß) = 40 ± 10 min) was dose independent and 6.7-fold slower than in blood. Up to 260 ± 70 nM of αM/uPA formed in vivo [second order association rate (kass) = 580 ± 60 M(-1)·s(-1)]. αM/uPA and products of its degradation contributed to durable intrapleural plasminogen activation up to 24 h after IPFT. Active PAI-1, active α2M, and α2M/uPA found in empyema, pneumonia, and malignant PFs demonstrate the capacity to support similar mechanisms in humans. Intrapleural scuPA processing differs from that in the bloodstream and includes 1) dose-dependent control of scuPA activation by endogenous active PAI-1; 2) two-step inactivation of free uPA with simultaneous formation of αM/uPA; and 3) slow intrapleural degradation of αM/uPA releasing active free uPA. This mechanism offers potential clinically relevant advantages that may enhance the bioavailability of intrapleural scuPA and may mitigate the risk of bleeding complications.


Asunto(s)
Fibrinolíticos/farmacología , Pleura/efectos de los fármacos , Tetraciclinas/farmacología , Terapia Trombolítica , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , alfa-Macroglobulinas/metabolismo , Animales , Western Blotting , Proliferación Celular , Femenino , Fibrinólisis/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Inhibidor 1 de Activador Plasminogénico/metabolismo , Pleura/lesiones , Pleura/metabolismo , Conejos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Proteínas Recombinantes/metabolismo
17.
Pharmaceutics ; 15(5)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37242740

RESUMEN

The incidence of empyema is increasing and associated with a mortality rate of 20% in patients older than 65 years. Since 30% of patients with advanced empyema have contraindications to surgical treatment, novel, low-dose, pharmacological treatments are needed. A Streptococcus pneumoniae-induced rabbit model of chronic empyema recapitulates the progression, loculation, fibrotic repair, and pleural thickening of human disease. Treatment with single chain (sc) urokinase (scuPA) or tissue type (sctPA) plasminogen activators in doses 1.0-4.0 mg/kg were only partially effective in this model. Docking Site Peptide (DSP; 8.0 mg/kg), which decreased the dose of sctPA for successful fibrinolytic therapy in acute empyema model did not improve efficacy in combination with 2.0 mg/kg scuPA or sctPA. However, a two-fold increase in either sctPA or DSP (4.0 and 8.0 mg/kg or 2.0 and 16.0 mg/kg sctPA and DSP, respectively) resulted in 100% effective outcome. Thus, DSP-based Plasminogen Activator Inhibitor 1-Targeted Fibrinolytic Therapy (PAI-1-TFT) of chronic infectious pleural injury in rabbits increases the efficacy of alteplase rendering ineffective doses of sctPA effective. PAI-1-TFT represents a novel, well-tolerated treatment of empyema that is amenable to clinical introduction. The chronic empyema model recapitulates increased resistance of advanced human empyema to fibrinolytic therapy, thus allowing for studies of muti-injection treatments.

18.
Am J Respir Cell Mol Biol ; 46(2): 196-206, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22298529

RESUMEN

The low-density lipoprotein receptor-related protein 1 (LRP-1) binds and can internalize a diverse group of ligands, including members of the fibrinolytic pathway, urokinase plasminogen activator (uPA), and its receptor, uPAR. In this study, we characterized the role of LRP-1 in uPAR processing, collagen synthesis, proteolysis, and migration in pleural mesothelial cells (PMCs). When PMCs were treated with the proinflammatory cytokines TNF-α and IL-1ß, LRP-1 significantly decreased at the mRNA and protein levels (70 and 90%, respectively; P < 0.05). Consequently, uPA-mediated uPAR internalization was reduced by 80% in the presence of TNF-α or IL-1ß (P < 0.05). In parallel studies, LRP-1 neutralization with receptor-associated protein (RAP) significantly reduced uPA-dependent uPAR internalization and increased uPAR stability in PMCs. LRP-1-deficient cells demonstrated increased uPAR t(1/2) versus LRP-1-expressing PMCs. uPA enzymatic activity was also increased in LRP-1-deficient and neutralized cells, and RAP potentiated uPA-dependent migration in PMCs. Collagen expression in PMCs was also induced by uPA, and the effect was potentiated in RAP-treated cells. These studies indicate that TNF-α and IL-1ß regulate LRP-1 in PMCs and that LRP-1 thereby contributes to a range of pathophysiologically relevant responses of these cells.


Asunto(s)
Colágeno Tipo I/metabolismo , Epitelio/metabolismo , Pleura/metabolismo , Receptores de Lipoproteína/metabolismo , Línea Celular , Humanos , Pleura/citología , Proteolisis
19.
J Biol Chem ; 286(49): 41949-41962, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21976662

RESUMEN

The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 µg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 µg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 µg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.


Asunto(s)
ADN/metabolismo , Fibrinólisis , Plasminógeno/metabolismo , Animales , ADN/química , Humanos , Cinética , Sustancias Macromoleculares/metabolismo , Modelos Químicos , Ácidos Nucleicos/química , Oligonucleótidos/química , Activadores Plasminogénicos/metabolismo , Proteínas Recombinantes/química , Salmón/metabolismo , Serpinas/metabolismo , Factores de Tiempo , Activador de Tejido Plasminógeno/química , Activador de Plasminógeno de Tipo Uroquinasa/química
20.
J Biol Chem ; 286(25): 22558-69, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21543318

RESUMEN

Prodiginines are a class of red-pigmented natural products with immunosuppressant, anticancer, and antimalarial activities. Recent studies on prodiginine biosynthesis in Streptomyces coelicolor have elucidated the function of many enzymes within the pathway. However, the function of RedJ, which was predicted to be an editing thioesterase based on sequence similarity, is unknown. We report here the genetic, biochemical, and structural characterization of the redJ gene product. Deletion of redJ in S. coelicolor leads to a 75% decrease in prodiginine production, demonstrating its importance for prodiginine biosynthesis. RedJ exhibits thioesterase activity with selectivity for substrates having long acyl chains and lacking a ß-carboxyl substituent. The thioesterase has 1000-fold greater catalytic efficiency with substrates linked to an acyl carrier protein (ACP) than with the corresponding CoA thioester substrates. Also, RedJ strongly discriminates against the streptomycete ACP of fatty acid biosynthesis in preference to RedQ, an ACP of the prodiginine pathway. The 2.12 Å resolution crystal structure of RedJ provides insights into the molecular basis for the observed substrate selectivity. A hydrophobic pocket in the active site chamber is positioned to bind long acyl chains, as suggested by a long-chain ligand from the crystallization solution bound in this pocket. The accessibility of the active site is controlled by the position of a highly flexible entrance flap. These data combined with previous studies of prodiginine biosynthesis in S. coelicolor support a novel role for RedJ in facilitating transfer of a dodecanoyl chain from one acyl carrier protein to another en route to the key biosynthetic intermediate 2-undecylpyrrole.


Asunto(s)
Prodigiosina/análogos & derivados , Streptomyces coelicolor/enzimología , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Prodigiosina/biosíntesis , Eliminación de Secuencia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Especificidad por Sustrato , Tioléster Hidrolasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA