Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(14): 7941-7949, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179676

RESUMEN

Late-onset sepsis (LOS) is a highly consequential complication of preterm birth and is defined by a positive blood culture obtained after 72 h of age. The causative bacteria can be found in patients' intestinal tracts days before dissemination, and cohort studies suggest reduced LOS risk in breastfed preterm infants through unknown mechanisms. Reduced concentrations of epidermal growth factor (EGF) of maternal origin within the intestinal tract of mice correlated to the translocation of a gut-resident human pathogen Escherichia coli, which spreads systemically and caused a rapid, fatal disease in pups. Translocation of Escherichia coli was associated with the formation of colonic goblet cell-associated antigen passages (GAPs), which translocate enteric bacteria across the intestinal epithelium. Thus, maternally derived EGF, and potentially other EGFR ligands, prevents dissemination of a gut-resident pathogen by inhibiting goblet cell-mediated bacterial translocation. Through manipulation of maternally derived EGF and alteration of the earliest gut defenses, we have developed an animal model of pathogen dissemination which recapitulates gut-origin neonatal LOS.


Asunto(s)
Traslocación Bacteriana/inmunología , Receptores ErbB/metabolismo , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Microbioma Gastrointestinal/inmunología , Leche Humana/inmunología , Sepsis Neonatal/inmunología , Animales , Animales Recién Nacidos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Lactancia Materna , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Heces/química , Heces/microbiología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Transgénicos , Leche Humana/metabolismo , Sepsis Neonatal/metabolismo , Sepsis Neonatal/microbiología , Transducción de Señal/inmunología , Factores de Tiempo
2.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38260555

RESUMEN

Humoral immune responses within the gut play diverse roles including pathogen clearance during enteric infections, maintaining tolerance, and facilitating the assemblage and stability of the gut microbiota. How these humoral immune responses are initiated and contribute to these processes are well studied. However, the signals promoting the expansion of these responses and their rapid mobilization to the gut mucosa are less well understood. Intestinal goblet cells form goblet cell-associated antigen passages (GAPs) to deliver luminal antigens to the underlying immune system and facilitate tolerance. GAPs are rapidly inhibited during enteric infection to prevent inflammatory responses to innocuous luminal antigens. Here we interrogate GAP inhibition as a key physiological response required for effective humoral immunity. Independent of infection, GAP inhibition resulted in enrichment of transcripts representing B cell recruitment, expansion, and differentiation into plasma cells in the small intestine (SI), which were confirmed by flow cytometry and ELISpot assays. Further we observed an expansion of isolated lymphoid follicles within the SI, as well as expansion of plasma cells in the bone marrow upon GAP inhibition. S1PR1-induced blockade of leukocyte trafficking during GAP inhibition resulted in a blunting of SI plasma cell expansion, suggesting that mobilization of plasma cells from the bone marrow contributes to their expansion in the gut. However, luminal IgA secretion was only observed in the presence of S. typhimurium infection, suggesting that although GAP inhibition mobilizes a mucosal humoral immune response, a second signal is required for full effector function. Overriding GAP inhibition during enteric infection abrogated the expansion of laminar propria IgA+ plasma cells. We conclude that GAP inhibition is a required physiological response for efficiently mobilizing mucosal humoral immunity in response to enteric infection.

3.
Front Immunol ; 14: 1268909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901245

RESUMEN

Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Ratones , Animales , Vancomicina/efectos adversos , Disbiosis/inducido químicamente , Macrófagos , Antibacterianos/efectos adversos , Neuronas , Sepsis/inducido químicamente
4.
Gut Microbes ; 15(2): 2284240, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036944

RESUMEN

Obesity and the metabolic syndrome are complex disorders resulting from multiple factors including genetics, diet, activity, inflammation, and gut microbes. Animal studies have identified roles for each of these, however the contribution(s) specifically attributed to the gut microbiota remain unclear, as studies have used combinations of genetically altered mice, high fat diet, and/or colonization of germ-free mice, which have an underdeveloped immune system. We investigated the role(s) of the gut microbiota driving obesity and inflammation independent of manipulations in diet and genetics in mice with fully developed immune systems. We demonstrate that the human obese gut microbiota alone was sufficient to drive weight gain, systemic, adipose tissue, and intestinal inflammation, but did not promote intestinal barrier leak. The obese microbiota induced gene expression promoting caloric uptake/harvest but was less effective at inducing genes associated with mucosal immune responses. Thus, the obese gut microbiota is sufficient to induce weight gain and inflammation.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Obesidad/metabolismo , Aumento de Peso , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL
5.
Trends Neurosci ; 45(12): 928-941, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36404456

RESUMEN

Interactions between the enteric nervous system (ENS), immune system, and gut microbiota regulate intestinal homeostasis in adults, but their development and role(s) in early life are relatively underexplored. In early life, these interactions are dynamic, because the mucosal immune system, microbiota, and the ENS are developing and influencing each other. Moreover, disrupting gut microbiota and gut immune system development, and potentially ENS development, by early-life antibiotic exposure increases the risk of diseases affecting the gut. Here, we review the development of the ENS and immune/epithelial cells, and identify potential critical periods for their interactions and development. We also highlight knowledge gaps that, when addressed, may help promote intestinal homeostasis, including in the settings of early-life antibiotic exposure.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Humanos , Recién Nacido , Neuroinmunomodulación , Microbioma Gastrointestinal/fisiología , Sistema Inmunológico , Antibacterianos
6.
Gut Microbes ; 14(1): 2007743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023810

RESUMEN

In healthy hosts the gut microbiota is restricted to gut tissues by several barriers some of which require MyD88-dependent innate immune sensor pathways. Nevertheless, some gut taxa have been reported to disseminate to systemic tissues. However, the extent to which this normally occurs during homeostasis in healthy organisms is still unknown. In this study, we recovered viable gut bacteria from systemic tissues of healthy wild type (WT) and MyD88-/- mice. Shotgun metagenomic-sequencing revealed a marked increase in the relative abundance of L. johnsonii in intestinal tissues of MyD88-/- mice compared to WT mice. Lactobacillus johnsonii was detected most frequently from multiple systemic tissues and at higher levels in MyD88-/- mice compared to WT mice. Viable L. johnsonii strains were recovered from different cell types sorted from intestinal and systemic tissues of WT and MyD88-/- mice. L. johnsonii could persist in dendritic cells and may represent murine immunomodulatory endosymbionts.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus johnsonii/fisiología , Factor 88 de Diferenciación Mieloide/deficiencia , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Células Dendríticas/microbiología , Tracto Gastrointestinal/microbiología , Lactobacillus johnsonii/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética
7.
Lab Anim (NY) ; 49(3): 79-88, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042160

RESUMEN

The intestinal immune system samples luminal contents to induce adaptive immune responses that include tolerance in the steady state and protective immunity during infection. How luminal substances are delivered to the immune system has not been fully investigated. Goblet cells have an important role in this process by delivering luminal substances to the immune system through the formation of goblet cell-associated antigen passages (GAPs). Soluble antigens in the intestinal lumen are transported across the epithelium transcellularly through GAPs and delivered to dendritic cells for presentation to T cells and induction of immune responses. GAPs can be identified and quantified by using the ability of GAP-forming goblet cells to take up fluorescently labeled dextran. Here, we describe a method to visualize GAPs and other cells that have the capacity to take up luminal substances by intraluminal injection of fluorescent dextran in mice under anesthesia, tissue sectioning for slide preparation and imaging with fluorescence microscopy. In contrast to in vivo two-photon imaging previously used to identify GAPs, this technique is not limited by anatomical constraints and can be used to visualize GAP formation throughout the length of the intestine. In addition, this method can be combined with common immunohistochemistry protocols to visualize other cell types. This approach can be used to compare GAP formation following different treatments or changes to the luminal environment and to uncover how sampling of luminal substances is altered in pathophysiological conditions. This protocol requires 8 working hours over 2-3 d to be completed.


Asunto(s)
Antígenos/metabolismo , Colon/inmunología , Células Dendríticas/inmunología , Células Caliciformes/inmunología , Vigilancia Inmunológica , Intestino Delgado/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Antígenos/inmunología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Dextranos/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Células Caliciformes/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Microbiota/inmunología , Ovalbúmina/administración & dosificación , Proyectos de Investigación
8.
Mucosal Immunol ; 13(2): 271-282, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31819172

RESUMEN

Tolerance to innocuous antigens from the diet and the commensal microbiota is a fundamental process essential to health. Why tolerance is efficiently induced to substances arising from the hostile environment of the gut lumen is incompletely understood but may be related to how these antigens are encountered by the immune system. We observed that goblet cell associated antigen passages (GAPs), but not other pathways of luminal antigen capture, correlated with the acquisition of luminal substances by lamina propria (LP) antigen presenting cells (APCs) and with the sites of tolerance induction to luminal antigens. Strikingly this role extended beyond antigen delivery. The GAP function of goblet cells facilitated maintenance of pre-existing LP T regulatory cells (Tregs), imprinting LP-dendritic cells with tolerogenic properties, and facilitating LP macrophages to produce the immunomodulatory cytokine IL-10. Moreover, tolerance to dietary antigen was impaired in the absence of GAPs. Thus, by delivering luminal antigens, maintaining pre-existing LP Tregs, and imprinting tolerogenic properties on LP-APCs GAPs support tolerance to substances encountered in the hostile environment of the gut lumen.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Células Caliciformes/inmunología , Macrófagos/inmunología , Membrana Mucosa/inmunología , Linfocitos T Reguladores/inmunología , Administración Oral , Animales , Presentación de Antígeno , Antígenos/inmunología , Células Cultivadas , Proteínas Activadoras de GTPasa/metabolismo , Tolerancia Inmunológica , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA