Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 15(10): 945-948, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501590

RESUMEN

Helical membrane proteins are typically assumed to attain stable transmembrane topologies immediately upon co-translational membrane insertion. Here we show that unassembled monomers of the small multidrug resistance (SMR) family exist in a dynamic equilibrium where the N-terminal transmembrane helix flips in and out of the membrane, with rates that depend on dimerization and the polypeptide sequence. Thus, membrane topology can display rapid dynamics in vivo and can be regulated by post-translational assembly.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/fisiología , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Antiportadores/genética , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Variación Genética , Proteínas de la Membrana/metabolismo , Plásmidos , Conformación Proteica
2.
Mol Cell ; 47(5): 777-87, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22841484

RESUMEN

Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Diciclohexilcarbodiimida/farmacología , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Compuestos Onio/antagonistas & inhibidores , Compuestos Onio/química , Compuestos Onio/farmacología , Compuestos Organofosforados/antagonistas & inhibidores , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Pironina/farmacología
3.
Proc Natl Acad Sci U S A ; 114(30): 7987-7992, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698365

RESUMEN

The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Escherichia coli , Multimerización de Proteína
4.
Proc Natl Acad Sci U S A ; 109(31): 12473-8, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802625

RESUMEN

Multidrug transporters are integral membrane proteins that use cellular energy to actively extrude antibiotics and other toxic compounds from cells. The multidrug/proton antiporter MdfA from Escherichia coli exchanges monovalent cationic substrates for protons with a stoichiometry of 1, meaning that it translocates only one proton per antiport cycle. This may explain why transport of divalent cationic drugs by MdfA is energetically unfavorable. Remarkably, however, we show that MdfA can be easily converted into a divalent cationic drug/≥ 2 proton-antiporter, either by random mutagenesis or by rational design. The results suggest that exchange of divalent cationi c drugs with two (or more) protons requires an additional acidic residue in the multidrug recognition pocket of MdfA. This outcome further illustrates the exceptional promiscuous capabilities of multidrug transporters.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Protones , Farmacorresistencia Microbiana/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transporte Iónico/fisiología , Proteínas de Transporte de Membrana/genética , Mutagénesis
5.
J Biol Chem ; 284(47): 32296-304, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19808670

RESUMEN

Multidrug (Mdr) transporters are membrane proteins that actively export structurally dissimilar drugs from the cell, thereby rendering the cell resistant to toxic compounds. Similar to substrate-specific transporters, Mdr transporters also undergo substrate-induced conformational changes. However, the mechanism by which a variety of dissimilar substrates are able to induce similar transport-compatible conformational responses in a single transporter remains unclear. To address this major aspect of Mdr transport, we studied the conformational behavior of the Escherichia coli Mdr transporter MdfA. Our results show that indeed, different substrates induce similar conformational changes in the transporter. Intriguingly, in addition, we observed that compounds other than substrates are able to confer similar conformational changes when covalently attached at the putative Mdr recognition pocket of MdfA. Taken together, the results suggest that the Mdr-binding pocket of MdfA is conformationally sensitive. We speculate that the same conformational switch that usually drives active transport is triggered promiscuously by merely occupying the Mdr-binding site.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Transporte Biológico , Membrana Celular/metabolismo , Detergentes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Endopeptidasa K/química , Maleimidas/farmacología , Proteínas de Transporte de Membrana/química , Modelos Químicos , Conformación Molecular , Polietilenglicoles/química , Conformación Proteica , Especificidad por Sustrato
6.
Biochim Biophys Acta ; 1794(5): 738-47, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19103310

RESUMEN

Multidrug transporters are membrane proteins that expel a wide spectrum of cytotoxic compounds from the cell. Through this function, they render cells resistant to multiple drugs. These transporters are found in many different families of transport proteins, of which the largest is the major facilitator superfamily. Multidrug transporters from this family are highly represented in bacteria and studies of them have provided important insight into the mechanism underlying multidrug transport. This review summarizes the work carried out on these interesting proteins and underscores the differences and similarities to other transport systems.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Farmacorresistencia Bacteriana/fisiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Modelos Moleculares , Electricidad Estática
7.
Microb Cell ; 1(10): 349-351, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28357213

RESUMEN

Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

8.
Elife ; 32014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135940

RESUMEN

In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous signal recognition particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously, however, the Alu domain is lacking in most eubacteria. In this study, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down the translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during the early stages of translation. We provide experimental evidence that slow translation during targeting and improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control the translation speed.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/química , Biosíntesis de Proteínas , Bacillus subtilis/metabolismo , Membrana Celular/microbiología , Codón , Mutagénesis , Estructura Terciaria de Proteína , Transporte de Proteínas , Ribosomas/química , Partícula de Reconocimiento de Señal/química
9.
Nat Commun ; 5: 4615, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25105370

RESUMEN

Secondary multidrug transporters use ion concentration gradients to energize the removal from cells of various antibiotics. The Escherichia coli multidrug transporter MdfA exchanges a single proton with a single monovalent cationic drug molecule. This stoichiometry renders the efflux of divalent cationic drugs energetically unfavourable, as it requires exchange with at least two protons. Here we show that surprisingly, MdfA catalyses efflux of divalent cations, provided that they have a unique architecture: the two charged moieties must be separated by a long linker. These drugs are exchanged for two protons despite the apparent inability of MdfA to exchange two protons for a single drug molecule. Our results suggest that these drugs are transported in two consecutive transport cycles, where each cationic moiety is transported as if it were a separate substrate. We propose that secondary transport can adopt a processive-like mode of action, thus expanding the substrate spectrum of multidrug transporters.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Catálisis , Cationes , Reactivos de Enlaces Cruzados/química , Decualinio/química , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Mutación , Plásmidos/metabolismo , Protones
10.
J Biol Chem ; 284(11): 6966-71, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19129186

RESUMEN

The largest family of solute transporters includes ion motive force-driven secondary transporters. Several well characterized solute-specific transport systems in this group have at least one irreplaceable acidic residue that plays a critical role in energy coupling during transport. Previous studies have established the importance of acidic residues in substrate recognition by major facilitator superfamily secondary multidrug transporters, but their role in the transport mechanism remained unknown. We have been investigating the involvement of acidic residues in the mechanism of MdfA, an Escherichia coli secondary multidrug/proton antiporter. We demonstrated that no single negatively charged side chain plays an irreplaceable role in MdfA. Accordingly, we hypothesized that MdfA might be able to utilize at least two acidic residues alternatively. In this study, we present evidence that indeed, unlike solute-specific secondary transporters, MdfA tolerates displacements of an essential negative charge to various locations in the putative drug translocation pathway. The results suggest that MdfA utilizes a proton translocation strategy that is less sensitive to perturbations in the geometry of the proton-binding site, further illustrating the exceptional structural promiscuity of multidrug transporters.


Asunto(s)
Aminoácidos Acídicos/metabolismo , Antiportadores/metabolismo , Farmacorresistencia Bacteriana Múltiple/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Aminoácidos Acídicos/genética , Antiportadores/genética , Sitios de Unión/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Estructura Terciaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA