RESUMEN
The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.
Asunto(s)
Metionina Adenosiltransferasa , S-Adenosilmetionina , Animales , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , S-Adenosilmetionina/metabolismo , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas , Metionina/metabolismo , Ratas Sprague-Dawley , Purina-Nucleósido Fosforilasa/metabolismo , Purina-Nucleósido Fosforilasa/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , MultiómicaRESUMEN
BACKGROUND: The mitochondrial protein p32 is a validated therapeutic target of cancer overexpressed in glioma. Therapeutic targeting of p32 with monoclonal antibody or p32-binding LyP-1 tumor-homing peptide can limit tumor growth. However, these agents do not specifically target mitochondrial-localized p32 and would not readily cross the blood-brain barrier to target p32-overexpressing gliomas. Identifying small molecule inhibitors of p32 overexpressed in cancer is a more rational therapeutic strategy. Thus, in this study we employed a pharmacophore modeling strategy to identify small molecules that could bind and inhibit mitochondrial p32. METHODS: A pharmacophore model of C1q and LyP-1 peptide association with p32 was used to screen a virtual compound library. A primary screening assay for inhibitors of p32 was developed to identify compounds that could rescue p32-dependent glutamine-addicted glioma cells from glutamine withdrawal. Inhibitors from this screen were analyzed for direct binding to p32 by fluorescence polarization assay and protein thermal shift. Affect of the p32 inhibitor on glioma cell proliferation was assessed by Alamar Blue assay, and affect on metabolism was examined by measuring lactate secretion. RESULTS: Identification of a hit compound (M36) validates the pharmacophore model. M36 binds directly to p32 and inhibits LyP-1 tumor homing peptide association with p32 in vitro. M36 effectively inhibits the growth of p32 overexpressing glioma cells, and sensitizes the cells to glucose depletion. CONCLUSIONS: This study demonstrates a novel screening strategy to identify potential inhibitors of mitochondrial p32 protein overexpressed in glioma. High throughput screening employing this strategy has potential to identify highly selective, potent, brain-penetrant small molecules amenable for further drug development.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Secuencia de Aminoácidos , Neoplasias Encefálicas/patología , Proteínas Portadoras , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Polarización de Fluorescencia , Glioma/patología , Glucosa/farmacología , Humanos , Ácido Láctico/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
BACKGROUND: Glioblastoma (GBM) is a therapeutic challenge, associated with high mortality. More effective GBM therapeutic options are urgently needed. Hence, we screened a large multi-class drug panel comprising the NIH clinical collection (NCC) that includes 446 FDA-approved drugs, with the goal of identifying new GBM therapeutics for rapid entry into clinical trials for GBM. METHODS: Screens using human GBM cell lines revealed 22 drugs with potent anti-GBM activity, including serotonergic blockers, cholesterol-lowering agents (statins), antineoplastics, anti-infective, anti-inflammatories, and hormonal modulators. We tested the 8 most potent drugs using patient-derived GBM cancer stem cell-like lines. Notably, the statins were active in vitro; they inhibited GBM cell proliferation and induced cellular autophagy. Moreover, the statins enhanced, by 40-70 fold, the pro-apoptotic activity of irinotecan, a topoisomerase 1 inhibitor currently used to treat a variety of cancers including GBM. Our data suggest that the mechanism of action of statins was prevention of multi-drug resistance protein MDR-1 glycosylation. This drug combination was synergistic in inhibiting tumor growth in vivo. Compared to animals treated with high dose irinotecan, the drug combination showed significantly less toxicity. RESULTS: Our data identifies a novel combination from among FDA-approved drugs. In addition, this combination is safer and well tolerated compared to single agent irinotecan. CONCLUSIONS: Our study newly identifies several FDA-approved compounds that may potentially be useful in GBM treatment. Our findings provide the basis for the rational combination of statins and topoisomerase inhibitors in GBM.
Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Aprobación de Drogas , Glioblastoma/tratamiento farmacológico , United States Food and Drug Administration , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Camptotecina/farmacología , Camptotecina/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Irinotecán , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología , Quinolinas/administración & dosificación , Quinolinas/farmacología , Quinolinas/uso terapéutico , Esferoides Celulares/patología , Estados Unidos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The ability to selectively deliver compounds into atherosclerotic plaques would greatly benefit the detection and treatment of atherosclerotic disease. We describe such a delivery system based on a 9-amino acid cyclic peptide, LyP-1. LyP-1 was originally identified as a tumor-homing peptide that specifically recognizes tumor cells, tumor lymphatics, and tumor-associated macrophages. As the receptor for LyP-1, p32, is expressed in atherosclerotic plaques, we tested the ability of LyP-1 to home to plaques. Fluorescein-labeled LyP-1 was intravenously injected into apolipoprotein E (ApoE)-null mice that had been maintained on a high-fat diet to induce atherosclerosis. LyP-1 accumulated in the plaque interior, predominantly in macrophages. More than 60% of cells released from plaques were positive for LyP-1 fluorescence. Another plaque-homing peptide, CREKA, which binds to fibrin-fibronectin clots and accumulates at the surface of plaques, yielded fewer positive cells. Tissues that did not contain plaque yielded only traces of LyP-1(+) cells. LyP-1 was capable of delivering intravenously injected nanoparticles to plaques; we observed abundant accumulation of LyP-1-coated superparamagnetic iron oxide nanoparticles in the plaque interior, whereas CREKA-nanoworms remained at the surface of the plaques. Intravenous injection of 4-[(18)F]fluorobenzoic acid ([(18)F]FBA)-conjugated LyP-1 showed a four- to sixfold increase in peak PET activity in aortas containing plaques (0.31% ID/g) compared with aortas from normal mice injected with [(18)F]FBA-LyP-1(0.08% ID/g, P < 0.01) or aortas from atherosclerotic ApoE mice injected with [(18)F]FBA-labeled control peptide (0.05% ID/g, P < 0.001). These results indicate that LyP-1 is a promising agent for the targeting of atherosclerotic lesions.
Asunto(s)
Apolipoproteínas E , Aterosclerosis/metabolismo , Compuestos Férricos/farmacocinética , Nanopartículas , Péptidos Cíclicos/farmacocinética , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Sistemas de Liberación de Medicamentos/métodos , Femenino , Compuestos Férricos/farmacología , Ratones , Ratones Mutantes , Oligopéptidos/farmacocinética , Oligopéptidos/farmacología , Péptidos Cíclicos/farmacologíaRESUMEN
A significant barrier to the clinical translation of systemically administered therapeutic nanoparticles is their tendency to be removed from circulation by the mononuclear phagocyte system. The addition of a targeting ligand that selectively interacts with cancer cells can improve the therapeutic efficacy of nanomaterials, although these systems have met with only limited success. Here, we present a cooperative nanosystem consisting of two discrete nanomaterials. The first component is gold nanorod (NR) "activators" that populate the porous tumor vessels and act as photothermal antennas to specify tumor heating via remote near-infrared laser irradiation. We find that local tumor heating accelerates the recruitment of the second component: a targeted nanoparticle consisting of either magnetic nanoworms (NW) or doxorubicin-loaded liposomes (LP). The targeting species employed in this work is a cyclic nine-amino acid peptide LyP-1 (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) that binds to the stress-related protein, p32, which we find to be upregulated on the surface of tumor-associated cells upon thermal treatment. Mice containing xenografted MDA-MB-435 tumors that are treated with the combined NR/LyP-1LP therapeutic system display significant reductions in tumor volume compared with individual nanoparticles or untargeted cooperative system.
Asunto(s)
Nanoestructuras , Neoplasias/terapia , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológicoRESUMEN
Tumor-associated cell surface antigens and tumor-associated vascular markers have been used as a target for cancer intervention strategies. However, both types of targets have limitations due to accessibility, low and/or heterogeneous expression, and presence of tumor-associated serum antigen. It has been previously reported that a mitochondrial/cell surface protein, p32/gC1qR, is the receptor for a tumor-homing peptide, LyP-1, which specifically recognizes an epitope in tumor cells, tumor lymphatics, and tumor-associated macrophages/myeloid cells. Using antibody phage technology, we have generated an anti-p32 human monoclonal antibody (2.15). The 2.15 antibody, expressed in single-chain fragment variable and in trimerbody format, was then characterized in vivo using mice grafted subcutaneously with MDA-MB-231 human breast cancers cells, revealing a highly selective tumor uptake. The intratumoral distribution of the antibody was consistent with the expression pattern of p32 in the surface of some clusters of cells. These results demonstrate the potential of p32 for antibody-based tumor targeting strategies and the utility of the 2.15 antibody as targeting moiety for the selective delivery of imaging and therapeutic agents to tumors.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Portadoras/inmunología , Portadores de Fármacos/farmacología , Proteínas Mitocondriales/inmunología , Proteínas de Neoplasias/inmunología , Anticuerpos de Cadena Única/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antineoplásicos/inmunología , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Péptidos Cíclicos/inmunología , Péptidos Cíclicos/metabolismo , Anticuerpos de Cadena Única/inmunologíaRESUMEN
Nucleolin is specifically transported to the surface of proliferating endothelial cells in vitro and in vivo. In contrast to its well defined functions in the nucleus and cytoplasm, the function of cell surface nucleolin is poorly defined. We have previously identified the nucleolin-binding antibody NCL3 that specifically binds to cell surface nucleolin on angiogenic blood vessels in vivo and is internalized into the cell. Here, we show that NCL3 inhibits endothelial tube formation in vitro as well as angiogenesis in the matrigel plaque assay and subcutaneous tumor models in vivo. Intriguingly, the specific targeting of proliferating endothelial cells by NCL3 in subcutaneous tumor models leads to the normalization of the tumor vasculature and as a result to an increase in tumor oxygenation. Treatment of endothelial cells with anti-nucleolin antibody NCL3 leads to a decrease of mRNA levels of the anti-apoptotic molecule Bcl-2 and as a consequence induces endothelial cell apoptosis as evidenced by PARP cleavage. These data reveal a novel mode of action for anti-angiogenic therapy and identify cell surface nucleolin as a novel target for combinatorial chemotherapy.
Asunto(s)
Anticuerpos/farmacología , Apoptosis/efectos de los fármacos , Membrana Celular/metabolismo , Células Endoteliales/efectos de los fármacos , Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Oxígeno/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , NucleolinaRESUMEN
The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or "click" reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of "click" chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that "click" chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, "click" nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5 h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of "click" nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development.
Asunto(s)
Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/uso terapéutico , Alquinos/química , Aminas/química , Secuencia de Aminoácidos , Animales , Azidas/química , Proteínas Portadoras , Bovinos , Línea Celular Tumoral , Fluorescencia , Regulación de la Expresión Génica , Humanos , Magnetismo , Ratones , Proteínas Mitocondriales/metabolismo , Péptidos Cíclicos/metabolismo , Polímeros/química , Sensibilidad y Especificidad , Compuestos de Sulfhidrilo/químicaRESUMEN
We demonstrate here that the E2F1 induced by DNA damage can bind to and promote the apoptotic function of p53 via the cyclin A binding site of E2F1. This function of E2F1 does not require its DP-1 binding, DNA binding, or transcriptional activity and is independent of mdm2. All the cyclin A binding E2F family members can interact and cooperate with p53 to induce apoptosis. This suggests a novel role for E2F in regulating apoptosis in response to DNA damage. Cyclin A, but not cyclin E, prevents E2F1 from interacting and cooperating with p53 to induce apoptosis. However, in response to DNA damage, cyclin A levels decrease, with a concomitant increase in E2F1-p53 complex formation. These results suggest that the binding of E2F1 to p53 can specifically stimulate the apoptotic function of p53 in response to DNA damage.
Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular , Ciclina A/metabolismo , Daño del ADN , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-bcl-2 , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Separación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Citometría de Flujo , Humanos , Proteínas de Neoplasias/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , Factores de Transcripción/química , Factores de Transcripción/genética , Células Tumorales Cultivadas , Rayos Ultravioleta , Proteína X Asociada a bcl-2RESUMEN
Metabolic reprogramming is a key feature of tumorigenesis that is controlled by oncogenes. Enhanced utilization of glucose and glutamine are the best-established hallmarks of tumor metabolism. The oncogene c-Myc is one of the major players responsible for this metabolic alteration. However, the molecular mechanisms involved in Myc-induced metabolic reprogramming are not well defined. Here we identify p32, a mitochondrial protein known to play a role in the expression of mitochondrial respiratory chain complexes, as a critical player in Myc-induced glutamine addiction. We show that p32 is a direct transcriptional target of Myc and that high level of Myc in malignant brain cancers correlates with high expression of p32. Attenuation of p32 expression reduced growth rate of glioma cells expressing Myc and impaired tumor formation in vivo. Loss of p32 in glutamine addicted glioma cells induced resistance to glutamine deprivation and imparted sensitivity to glucose withdrawal. Finally, we provide evidence that p32 expression contributes to Myc-induced glutamine addiction of cancer cells. Our findings suggest that Myc promotes the expression of p32, which is required to maintain sufficient respiratory capacity to sustain glutamine metabolism in Myc transformed cells.
Asunto(s)
Neoplasias Encefálicas/genética , Proteínas Portadoras/genética , Glioma/genética , Glutamina/metabolismo , Proteínas Mitocondriales/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Humanos , Immunoblotting , Inmunohistoquímica , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Mitocondriales/metabolismo , Modelos Genéticos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Tumoral/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Staurosporine (STS) is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg) inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose) polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.
Asunto(s)
Liposomas/administración & dosificación , Liposomas/química , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Neoplasias Experimentales/tratamiento farmacológico , Proteína Quinasa C/antagonistas & inhibidores , Estaurosporina/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Difusión , Femenino , Humanos , Liposomas/ultraestructura , Masculino , Ratones , Ratones Desnudos , Nanocápsulas/ultraestructura , Neoplasias Experimentales/patología , Estaurosporina/química , Resultado del TratamientoRESUMEN
The comprehensive characterization of a large number of cancer genomes will eventually lead to a compendium of genetic alterations in specific cancers. Unfortunately, the number and complexity of identified alterations complicate endeavors to identify biologically relevant mutations critical for tumor maintenance because many of these targets are not amenable to manipulation by small molecules or antibodies. RNA interference provides a direct way to study putative cancer targets; however, specific delivery of therapeutics to the tumor parenchyma remains an intractable problem. We describe a platform for the discovery and initial validation of cancer targets, composed of a systematic effort to identify amplified and essential genes in human cancer cell lines and tumors partnered with a novel modular delivery technology. We developed a tumor-penetrating nanocomplex (TPN) that comprised small interfering RNA (siRNA) complexed with a tandem tumor-penetrating and membrane-translocating peptide, which enabled the specific delivery of siRNA deep into the tumor parenchyma. We used TPN in vivo to evaluate inhibitor of DNA binding 4 (ID4) as a novel oncogene. Treatment of ovarian tumor-bearing mice with ID4-specific TPN suppressed growth of established tumors and significantly improved survival. These observations not only credential ID4 as an oncogene in 32% of high-grade ovarian cancers but also provide a framework for the identification, validation, and understanding of potential therapeutic cancer targets.
Asunto(s)
Proteínas Inhibidoras de la Diferenciación/genética , Nanopartículas/química , Oncogenes/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Interferente Pequeño/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Nanopartículas/efectos adversos , Tejido Subcutáneo/patología , Transcripción GenéticaRESUMEN
p32/gC1qR/C1QBP/HABP1 is a mitochondrial/cell surface protein overexpressed in certain cancer cells. Here we show that knocking down p32 expression in human cancer cells strongly shifts their metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. The p32 knockdown cells exhibited reduced synthesis of the mitochondrial-DNA-encoded OXPHOS polypeptides and were less tumorigenic in vivo. Expression of exogenous p32 in the knockdown cells restored the wild-type cellular phenotype and tumorigenicity. Increased glucose consumption and lactate production, known as the Warburg effect, are almost universal hallmarks of solid tumors and are thought to favor tumor growth. However, here we show that a protein regularly overexpressed in some cancers is capable of promoting OXPHOS. Our results indicate that high levels of glycolysis, in the absence of adequate OXPHOS, may not be as beneficial for tumor growth as generally thought and suggest that tumor cells use p32 to regulate the balance between OXPHOS and glycolysis.
Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/metabolismo , Fosforilación Oxidativa , Animales , Carbono/metabolismo , Proteínas Portadoras/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Humanos , Espectrometría de Masas , Ratones , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Metástasis de la Neoplasia , Neoplasias/enzimología , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Rotenona/farmacologíaRESUMEN
A tumor homing peptide, LyP-1, selectively binds to tumor-associated lymphatic vessels and tumor cells in certain tumors and exhibits an antitumor effect. Here, we show that the protein known as p32 or gC1q receptor is the receptor for LyP-1. Various human tumor cell lines were positive for p32 expression in culture, and the expression was increased in xenograft tumors grown from the positive cell lines. Fluorescence-activated cell sorting analyses with anti-p32 antibodies showed that p32-positive cell lines expressed p32 at the cell surface. These cells bound and internalized LyP-1 peptide in proportion to the cell-surface expression level, which correlated with malignancy rather than total p32 expression in the cells. Like the LyP-1 peptide, p32 antibodies highlighted hypoxic areas in tumors, where they bound to both tumor cells and cells that expressed macrophage/myeloid cell markers and often seemed to be incorporated into the walls of tumor lymphatics. Significant p32 expression was common in human cancers and the p32 levels were often greatly elevated compared with the corresponding normal tissue. These results establish p32, particularly its cell-surface-expressed form, as a new marker of tumor cells and tumor-associated macrophages/myeloid cells in hypoxic/metabolically deprived areas of tumors. Its unique localization in tumors and its relative tumor specificity may make p32 a useful target in tumor diagnosis and therapy.
Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismoRESUMEN
We show here that the cell cycle-dependent DNA-binding and transcriptional activity of p53 correlates with E2F expression in human primary fibroblasts. E2F1 binds and stimulates DNA-binding, transactivation and apoptotic functions of p53 but not p63 and p73. E2F1 binds residues 347-370 of p53 and enhances nuclear retention of Ser315 phosphorylated p53. This regulation of p53 by E2F1 is cell cycle dependent, as the cellular distribution of Ser315 phosphorylated p53 is associated with the periodic expression of E2F and cyclin A throughout the cell cycle. This is the first demonstration that the activities of p53 are regulated during the cell cycle by E2F/p53 interactions and that phosphorylation of p53 at Ser315 is required for this regulation.