Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Chem Phys ; 157(12): 124503, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36182419

RESUMEN

Methanol as a basic liquid and the simplest alcohol is widely used in industry and scientific experiments. However, there are still no reliable data on the thermodynamic properties of methanol at high pressure. Here, we present an experimental and computational study of the thermodynamic properties of liquid methanol under high pressure up to 15 kbar, which significantly exceeds previously reported pressures. A temperature response to a small adiabatic change in pressure has been measured using a piston-cylinder apparatus. We have compared our experimental results with the literature data for lower pressures and NIST approximations. We find that all existing experimental data do not agree with each other and with our experiments. The NIST approximations are mainly based on low pressure data and appear to be unreliable in the high pressure region, giving even qualitatively wrong results. OPLS and COMPASS force field models have been used in the method of molecular dynamics. The agreement of molecular simulation with our experimental data is definitely unsatisfactory, which means that the most common computational models of methanol are not sufficiently good. We hope that these experimental data and approximations will help in developing better computational models.

2.
Soft Matter ; 16(16): 3962-3972, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32249869

RESUMEN

We present a molecular dynamics simulation study of the phase diagram and melting scenarios of two-dimensional Hertzian spheres with exponent 7/2. We have found multiple re-entrant melting of a single crystal with a triangular lattice in a wide range of densities from 0.5 to 10.0. Depending on the position on the phase diagram, the triangular crystal has been shown to melt through both two-stage melting with a first-order hexatic-isotropic liquid transition and a continuous solid-hexatic transition as well as in accordance with the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) scenario (two continuous transitions with an intermediate hexatic phase). We studied the behavior of heat capacity and have shown that despite two-stage melting, the heat capacity has one peak which seems to correspond to a solid-hexatic transition.

3.
J Chem Phys ; 152(15): 154501, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32321261

RESUMEN

Water is the most common liquid on the Earth. At the same time, it is the strangest liquid having numerous anomalous properties. For this reason, although water was investigated in numerous studies, many questions still remain unanswered. Even the thermodynamic properties of water at high pressures are unknown. In this paper, we present an experimental study of the thermodynamic properties of water up to a pressure of 12 kbar and a temperature of 473 K far above the range of pressures and temperatures in previous studies. We compare the experimental results to the results of computer simulations of two models of water (SPC/E and TIP4P) and show that the SPC/E model is not appropriate at high pressure, while the TIP4P model describes the equation of state of water, but fails to describe the heat capacity.

4.
J Chem Phys ; 143(18): 184702, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26567675

RESUMEN

It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here we present a molecular dynamics study of the behavior of cyclohexane confined in carbon slit pores. The local structure and orientational ordering of cyclohexane molecules are investigated. It is shown that the system freezes with decreasing the pore width, and the freezing temperature of nanoconfined cyclohexane is higher than the bulk one.

5.
Phys Rev Lett ; 112(15): 157803, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785074

RESUMEN

We present a computer simulation study of the phase behavior of two-dimensional (2D) classical particles repelling each other through an isotropic core-softened potential. As in the analogous three-dimensional (3D) case, a reentrant-melting transition occurs upon compression for not too high pressures, along with a spectrum of waterlike anomalies in the fluid phase. However, in two dimensions in the low density part of the phase diagram melting is a continuous two-stage transition, with an intermediate hexatic phase. All available evidence supports the Kosterlitz-Thouless-Halperin-Nelson-Young scenario for this melting transition. On the other hand, at the high density part of the phase diagram one first-order transition takes place.

6.
J Chem Phys ; 141(18): 18C522, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25399187

RESUMEN

In the present paper, using a molecular dynamics simulation, we study a nature of melting of a two-dimensional (2D) system of classical particles interacting through a purely repulsive isotropic core-softened potential which is used for the qualitative description of the anomalous behavior of water and some other liquids. We show that the melting scenario drastically depends on the potential softness and changes with increasing the width of the smooth repulsive shoulder. While at small width of the repulsive shoulder the melting transition exhibits what appears to be weakly first-order behavior, at larger values of the width a reentrant-melting transition occurs upon compression for not too high pressures, and in the low density part of the 2D phase diagram melting is a continuous two-stage transition, with an intermediate hexatic phase in accordance with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario. On the other hand, at high density part of the phase diagram one first-order transition takes place. These results may be useful for the qualitative understanding the behavior of water confined between two hydrophobic plates.

7.
J Chem Phys ; 141(3): 034508, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25053327

RESUMEN

Some fluids are known to behave anomalously. The so-called structural anomaly which means that the fluid becomes less structures under isothermal compression is among the most frequently discussed ones. Several methods for quantifying the degree of structural order are described in the literature and are used for calculating the region of structural anomaly. It is generally thought that all of the structural order determinations yield qualitatively identical results. However, no explicit comparison was made. This paper presents such a comparison for the first time. The results of some definitions are shown to contradict the intuitive notion of a fluid. On the basis of this comparison, we show that the region of structural anomaly can be most reliably determined from the behavior of the excess entropy.

8.
J Comput Chem ; 34(30): 2615-24, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24006288

RESUMEN

It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered-graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior.

9.
Phys Rev Lett ; 111(14): 145901, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24138256

RESUMEN

Recently, we have proposed a new dynamic line on the phase diagram in the supercritical region, the Frenkel line. Crossing the line corresponds to the radical changes of system properties. Here, we focus on the dynamics of model Lennard-Jones and soft-sphere fluids. We show that the location of the line can be rigorously and quantitatively established on the basis of the velocity autocorrelation function (VAF) and mean-square displacements. VAF is oscillatory below the line at low temperature, and is monotonically decreasing above the line at high temperature. Using this criterion, we show that the crossover of particle dynamics and key liquid properties occur on the same line. We also show that positive sound dispersion disappears in the vicinity of the line in both systems. We further demonstrate that the dynamic line bears no relationship to the existence of the critical point. Finally, we find that the region of existence of liquidlike dynamics narrows with the increase of the exponent of the repulsive part of interatomic potential.

10.
J Chem Phys ; 139(23): 234501, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359374

RESUMEN

The state of matter above the critical point is terra incognita, and is loosely discussed as a physically homogeneous flowing state where no differences can be made between a liquid and a gas and where properties undergo no marked or distinct changes with pressure and temperature. In particular, the structure of supercritical state is currently viewed to be the same everywhere on the phase diagram, and to change only gradually and in a featureless way while moving along any temperature and pressure path above the critical point. Here, we demonstrate that this is not the case, but that there is a well-defined structural crossover instead. Evidenced by the qualitative changes of distribution functions of interatomic distances and angles, the crossover demarcates liquid-like and gas-like configurations and the presence of medium-range structural correlations. Importantly, the discovered structural crossover is closely related to both dynamic and thermodynamic crossovers operating in the supercritical state, providing new unexpected fundamental interlinks between the supercritical structure, dynamics, and thermodynamics.

11.
Phys Rev E ; 106(6-1): 064102, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671079

RESUMEN

It is well known that some thermodynamic quantities demonstrate maxima in the vicinity of a critical point. The lines of these maxima in the density-temperature or pressure-temperature planes are called "Widom lines." The behavior of Widom lines of one-component fluids has already been well studied in a number of papers by different authors. However, up to now the understanding of Widom lines in binary mixtures is still lacking. In this paper we study the boiling curve and the near-critical maxima of mixtures of nitrogen and propane by means of molecular dynamics simulation. We calculate the boiling curves and estimate the critical temperatures in a set of concentrations from pure nitrogen to pure propane. The influence of the composition of the mixture on the Widom lines of the system is evaluated. We find that the mixture of propane and nitrogen behaves as a type I mixture in the van Konynenburg-Scott classification, i.e., when the concentration is changed, the critical point and the corresponding Widom lines continuously shift in the density-temperature plane.


Asunto(s)
Nitrógeno , Propano , Temperatura , Termodinámica , Simulación de Dinámica Molecular
12.
Phys Rev E ; 106(2-1): 024602, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110004

RESUMEN

The anomalous behavior of a two-dimensional system of Hertzian disks with exponent α=7/2 has been studied using the method of molecular dynamics. The phase diagram of this system is the melting line of a triangular crystal with several maxima and minima. Waterlike density and diffusion anomalies have been found in the reentrant melting regions. Noteworthy, a density anomaly has been observed not only in the liquid and hexatic but also in the solid phase. The calculations of the phonon spectra of longitudinal and transverse modes have yielded negative dependence of the frequency of transverse modes on density along all directions in the regions with a density anomaly. This indicates an association of the density anomaly with transverse oscillations of the crystal lattice. The regions of density and diffusion anomalies have been drawn on the phase diagram. It has been found that the stability regions of anomalous diffusion extend to temperatures well above the maximum melting point T=0.0058 of the triangular crystal.

13.
J Chem Phys ; 134(4): 044523, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21280764

RESUMEN

We report a detailed simulation study of the phase behavior of core-softened system with attractive well. Different repulsive shoulder widths and attractive well depths are considered which allows to monitor the influence of repulsive and attractive forces on the phase diagram of the system. Thermodynamic anomalies in the systems are also studied. It is shown that the diffusion anomaly is stabilized by small attraction.

14.
J Chem Phys ; 135(12): 124512, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21974540

RESUMEN

In the present article we carry out a molecular dynamics study of the core-softened system and show that the existence of the water-like anomalies in this system depends on the trajectory in P-ρ-T space along which the behavior of the system is studied. For example, diffusion and structural anomalies are visible along isotherms as a function of density, but disappears along the isochores and isobars as a function of temperature. On the other hand, the diffusion anomaly may be seen along adiabats as a function of temperature, density, and pressure. It should be noted that it may be no signature of a particular anomaly along a particular trajectory, but the anomalous region for that particular anomaly can be defined when all possible trajectories in the same space are examined (for example, signature of diffusion anomaly is evident through the crossing of different isochors. However, there is no signature of diffusion anomaly along a particular isochor). We also analyze the applicability of the Rosenfeld entropy scaling relations to this system in the regions with the water-like anomalies. It is shown that the validity of the Rosenfeld scaling relation for the diffusion coefficient also depends on the trajectory in the P-ρ-T space along which the kinetic coefficients and the excess entropy are calculated.


Asunto(s)
Simulación de Dinámica Molecular , Difusión , Temperatura
15.
J Chem Phys ; 135(23): 234502, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22191881

RESUMEN

In this paper we present a simulation study of water-like anomalies in core-softened system introduced in our previous papers. We investigate the anomalous regions for a system with the same functional form of the potential but with different parameters and show that the order of the region of anomalous diffusion and the region of density anomaly is inverted with increasing the width of the repulsive shoulder.

16.
Phys Rev E ; 103(6-1): 062612, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271643

RESUMEN

Using molecular dynamics simulation we have investigated the influence of random pinning on the phase diagram and melting scenarios of a two-dimensional system with the Hertz potential for α=5/2. It has been shown that random pinning can cardinally change the mechanism of first-order transition between the different crystalline phases (triangular and square) by virtue of generating hexatic and tetratic phases: a triangular crystal to hexatic transition is of the continuous Berezinskii-Kosterlitz-Thouless (BKT) type, a hexatic to tetratic transition is of first order, and finally, there is a continuous BKT-type transition from tetratic to the square crystal.

17.
J Colloid Interface Sci ; 580: 135-145, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32683112

RESUMEN

The structure of a simple monatomic system in a slit pore has been studied by means of the molecular dynamics simulation. Nowadays, it is supposed that the structure of crystals in a narrow pore (narrower than approximately eight atomic diameters) should be described as a set of two-dimensional layers with either triangular, or square symmetry. In addition, a buckled phase can appear with particles located in zigzag way around a plane. It is shown that all these structures can be considered as cuts of FCC or HCP structures.

18.
J Phys Condens Matter ; 32(39): 395101, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32452832

RESUMEN

Investigation of the longitudinal and transverse excitations in liquids is of great importance for understanding the fundamentals of the liquid state of matter. One of the important questions is the temperature and density dependence of the frequency of the excitations. In our recent works it was shown that while in simple liquids the frequency of longitudinal excitations increases when the temperature is increased isochorically, in water the frequency can anomalously decrease with the temperature increase. In the present manuscript we study the dispersion curves of longitudinal and transverse excitations of water and liquid silicon modelled by Stillinger-Weber (SW) potential. We show that both in liquid silicon and SW model of water the frequencies of longitudinal excitations slightly increase with temperature which is in contrast to the results for SPC/E model of water.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051202, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19518442

RESUMEN

We report a computer-simulation study of the equilibrium phase diagram of a three-dimensional system of particles with a repulsive-shoulder potential. The phase diagram was obtained using free-energy calculations. At low temperatures, we observe a number of distinct crystal phases. We show that at certain values of the potential parameters the system exhibits the waterlike thermodynamic anomalies: a density anomaly and a diffusion anomaly. The anomalies disappear with increasing the repulsive step width: more precisely, their locations move to the region where the crystalline phase is stable.

20.
J Phys Condens Matter ; 31(31): 315103, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31039557

RESUMEN

We present the results of a computer simulation study of a finite temperature phase diagram of two-dimensional and quasi two-dimensional core-softened systems both taking into account long-range Coulomb-like forces and ignoring them. The system structure was determined from analysis of the behavior of radial distribution functions, order parameters and number of nearest neighbors. The system has been shown to have a large number of different phases. We have found that long-range forces substantially affected the structure and the melting point of the system at low and moderate densities, while at high densities the effect of long-range forces was negligible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA