Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(1): 112-122, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37966053

RESUMEN

BACKGROUND: The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES: Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS: An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS: K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS: Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.


Asunto(s)
Antiinfecciosos , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Klebsiella pneumoniae/genética , Péptidos Antimicrobianos , Proteómica , Lipopolisacáridos , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Adv Exp Med Biol ; 1443: 221-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409424

RESUMEN

Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Proteómica , Humanos , Proteómica/métodos , Inmunidad Innata , Fenómenos Fisiológicos Celulares , Biomarcadores/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/terapia , Inflamación
3.
Reprod Domest Anim ; 56(4): 586-603, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33460477

RESUMEN

The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan (http://www.targetscan.org) and mIRBase (http://www.mirbase.org) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.


Asunto(s)
Embrión de Mamíferos/química , Proteoma/análisis , Oveja Doméstica/embriología , Animales , Femenino , Inseminación Artificial/veterinaria , Masculino , MicroARNs/genética , Proteoma/genética , Oveja Doméstica/genética , Oveja Doméstica/metabolismo
4.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823483

RESUMEN

Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.


Asunto(s)
Intestinos/patología , Precondicionamiento Isquémico , Neutrófilos/metabolismo , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Proteómica , Daño por Reperfusión/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosfoproteínas/química , Fosforilación , Dominios Proteicos , Proteoma/metabolismo , Ratas , Daño por Reperfusión/patología , Transducción de Señal
5.
Proteomics ; 19(17): e1900148, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31168931

RESUMEN

This dataset brief is about the descriptive proteome of Qualea grandiflora plants by label free mass spectrometry (LC-MS/MS). Q. grandiflora is a plant that accumulates aluminum (Al) in high quantities and requires it for growth and development. Although quite relevant for the understanding of Al effects on plants, the proteome of Q. grandiflora has not been studied yet. Therefore, the current proteome analysis identifies a total of 2010 proteins. Furthermore, the identified Q. grandiflora root proteins are associated with several crucial molecular functions, biological processes, and cellular sites. Hence, the proteome analysis of Q. grandiflora will contribute to unravel how plants evolved to cope with high levels of Al in soils. All data can be accessed at the Centre for Computational Mass Spectrometry - MassIVE MSV000082284 - https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=adb9647282a5421a9cffe3124c060f46.


Asunto(s)
Aluminio/farmacología , Cromatografía Liquida/métodos , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Magnoliopsida/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo
6.
J Ind Microbiol Biotechnol ; 46(11): 1517-1529, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31236777

RESUMEN

Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger's secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.


Asunto(s)
Aspergillus niger/enzimología , Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo , Saccharum/metabolismo , Aspergillus niger/genética , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hidrólisis , Proteómica
7.
Int J Cancer ; 140(11): 2397-2407, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28090647

RESUMEN

Extracellular vesicles (EVs), including exosomes, play a key role in inter and intracellular communication, promoting the proliferation and invasion of recipient cells to support tumor growth and metastasis. Metastasis comprises multiple steps that first include the detachment of tumor cells through epithelial to mesenchymal transition (EMT), allowing the physical dissemination to distant organs. Thereafter, cancer-derived exosomes are still critical components for preparing the tumor microenvironment by (i) enabling tumor cells to escape from the immunological surveillance and (ii) arranging the pre-metastatic site for the engraftment of detached cancer cells. In this review, we discuss the multifaceted role of EVs in the multiple steps of metastasis. Future research directions draw attention to EVs as biological targets for cancer diagnosis, prognosis and therapy. However, due to their significant role in cell communication, they may become a valuable drug delivery system.


Asunto(s)
Vesículas Extracelulares/patología , Neoplasias/patología , Animales , Comunicación Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Exosomas/patología , Humanos , Ratones , Metástasis de la Neoplasia/patología , Microambiente Tumoral/fisiología
8.
Proteomics ; 15(10): 1746-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25736976

RESUMEN

Cowpea (Vigna unguiculata L. Walp) is an important legume species well adapted to low fertility soils and prolonged drought periods. One of the main problems that cause severe yield losses in cowpea is the root-knot nematode Meloidogyne incognita. The aim of this work was to analyze the differential expression of proteins in the contrasting cultivars of cowpea CE 31 (highly resistant) and CE 109 (slightly resistant) during early stages of M. incognita infection. Cowpea roots were collected at 3, 6, and 9 days after inoculation and used for protein extraction and 2-DE analysis. From a total of 59 differential spots, 37 proteins were identified, mostly involved in plant defense, such as spermidine synthase, patatin, proteasome component, and nitrile-specifier protein. A follow-up study was performed by quantitative RT-PCR analysis of nine selected proteins and the results revealed a very similar upregulation trend between the protein expression profiles and the corresponding transcripts. This study also identified ACT and GAPDH as a good combination of reference genes for quantitative RT-PCR analysis of the pathosystem cowpea/nematode. Additionally, an interactome analysis showed three major pathways affected by nematode infection: proteasome endopeptidase complex, oxidative phosphorylation, and flavonoid biosynthesis. Taken together, the results obtained by proteome, transcriptome, and interactome approaches suggest that oxidative stress, ubiquitination, and glucosinolate degradation may be part of cowpea CE 31 resistance mechanisms in response to nematode infection.


Asunto(s)
Fabaceae/parasitología , Interacciones Huésped-Parásitos , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Proteómica/métodos , Tylenchoidea/fisiología , Animales , Electroforesis en Gel Bidimensional , Fabaceae/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Interacciones Huésped-Parásitos/genética , Espectrometría de Masas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
J Cell Biochem ; 116(9): 1831-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25727365

RESUMEN

The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs).


Asunto(s)
Núcleo Celular/fisiología , Neutrófilos/fisiología , Diferenciación Celular , Forma del Núcleo Celular , Ensamble y Desensamble de Cromatina , Humanos
10.
Vet Ophthalmol ; 18(3): 198-209, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24981051

RESUMEN

INTRODUCTION: Human amniotic membrane (AM) has been used as a biomaterial for surgical wound skin and ocular surface reconstruction for several years. Currently, equine AM has been used for corneal reconstruction in several animal species, and appears to have the same properties as human AM. Despite the observed positive healing abilities of this tissue in horses with ulcerative keratitis the proteins of equine AM have not been described. OBJECTIVE: To identify proteins known to be associated with corneal healing from frozen equine AM. PROCEDURES: Placentas were acquired from healthy live foal births from a local Thoroughbred breeding farm. The amnion was removed from the chorion by blunt dissection, washed with phosphate-buffered saline (PBS), and treated with 0.05% trypsin and 0.02% ethylene diaminetetraacetic acid in PBS. Amnion was attached to nitrocellulose paper (epithelial side up), and cut into 4 × 4 cm pieces. The sheets were frozen at -80 °C. The protein samples were solubilized, and analyzed by 2D gel electrophoresis and shotgun proteomics. RESULTS: A reference identification map of the equine AM proteins was produced and 149 different proteins were identified. From gel-based proteomics, 49 spots were excised and 43 proteins identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Shotgun proteomics identified 116 proteins with an overlap of 10 proteins in both analyses. CONCLUSIONS: We have described a reference map for equine AM proteins that may provide a background to explain the positive results found in horses with ulcerative keratopathies using this biomaterial.


Asunto(s)
Amnios/metabolismo , Caballos/metabolismo , Proteómica , Transcriptoma , Animales , Regulación de la Expresión Génica/fisiología
11.
J Vis Exp ; (204)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38407215

RESUMEN

Neutrophils are known as one of the first lines of defense in the innate immune response and can perform many particular cellular functions, such as chemotaxis, reverse migration, phagocytosis, degranulation of cytotoxic enzymes and metabolites, and release of DNA as neutrophil extracellular traps (NETs). Neutrophils not only have tightly regulated signaling themselves, but also participate in the regulation of other components of the immune system. As fresh neutrophils are terminally differentiated, short-lived, and highly variable among individuals, it is important to make the most of the collected samples. Researchers often need to perform screening assays to assess an overview of the many neutrophil functions that may be affected by specific conditions under evaluation. A set of tests following a single isolation process of normal density neutrophils was developed to address this need, seeking a balance between speed, comprehensiveness, cost, and accuracy. The results can be used to reason and guide in-depth follow-up studies. This procedure can be carried out in an average time of 4 h and includes the evaluation of cell viability, reactive oxygen species (ROS) production, real-time migration, and phagocytosis of yeast on glass slides, leaving enough cells for more detailed approaches like omics studies. Moreover, the procedure includes a way to easily observe a preliminary suggestion of NETs after fast panoptic staining observed by light microscopy, with a lack of specific markers, albeit enough to indicate if further efforts in that way would be worthwhile. The diversity of functions tested combines common points among tests, reducing the analysis time and expenses. The procedure was named NeutroFun Screen, and although having limitations, it balances the aforementioned factors. Furthermore, the aim of this work is not a definite test set, but rather a guideline that can easily be adjusted to each lab's resources and demands.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Fagocitosis , Citodiagnóstico , Inmunidad Innata
12.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786676

RESUMEN

Cotton is an important plant-based protein. Cottonseed cake, a byproduct of the biodiesel industry, offers potential in animal supplementation, although the presence of the antinutritional sesquiterpenoid gossypol limits utilization. The macrofungus Panus lecomtei offers potential in detoxification of antinutritional factors. Through an enzymatic and proteomic analysis of P. lecomtei strain BRM044603, grown on crushed whole cottonseed contrasting in the presence of free gossypol (FG), this study investigated FG biodegradation over a 15-day cultivation period. Fungal growth reduced FG to levels at 100 µg/g, with a complex adaptive response observed, involving primary metabolism and activation of oxidative enzymes for metabolism of xenobiotics. Increasing activity of secreted laccases correlated with a reduction in FG, with enzyme fractions degrading synthetic gossypol to trace levels. A total of 143 and 49 differentially abundant proteins were observed across the two contrasting growth conditions after 6 and 12 days of cultivation, respectively, revealing a dynamic protein profile during FG degradation, initially related to constitutive metabolism, then later associated with responses to oxidative stress. The findings advance our understanding of the mechanisms involved in gossypol degradation and highlight the potential of P. lecomtei BRM044603 in cotton waste biotreatment, relevant for animal supplementation, sustainable resource utilization, and bioremediation.

13.
Sci Rep ; 13(1): 2602, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788287

RESUMEN

Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.


Asunto(s)
Corynebacterium glutamicum , Espectrometría de Masas en Tándem , Corynebacterium glutamicum/metabolismo , Proteómica , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
14.
Plants (Basel) ; 12(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176957

RESUMEN

The co-occurrence of biotic and abiotic stresses in agricultural areas severely affects crop performance and productivity. Drought is one of the most adverse environmental stresses, and its association with root-knot nematodes further limits the development of several economically important crops, such as cowpea. Plant responses to combined stresses are complex and require novel adaptive mechanisms through the induction of specific biotic and abiotic signaling pathways. Therefore, the present work aimed to identify proteins involved in the resistance of cowpea to nematode and drought stresses individually and combined. We used the genotype CE 31, which is resistant to the root-knot nematode Meloidogyne spp. And tolerant to drought. Three biological replicates of roots and shoots were submitted to protein extraction, and the peptides were evaluated by LC-MS/MS. Shotgun proteomics revealed 2345 proteins, of which 1040 were differentially abundant. Proteins involved in essential biological processes, such as transcriptional regulation, cell signaling, oxidative processes, and photosynthesis, were identified. However, the main defense strategies in cowpea against cross-stress are focused on the regulation of hormonal signaling, the intense production of pathogenesis-related proteins, and the downregulation of photosynthetic activity. These are key processes that can culminate in the adaptation of cowpea challenged by multiple stresses. Furthermore, the candidate proteins identified in this study will strongly contribute to cowpea genetic improvement programs.

15.
Viruses ; 15(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36851755

RESUMEN

Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.


Asunto(s)
Proteínas de la Cápside , Carica , Aminoácidos , Cápside , Proteínas de la Cápside/genética , Cromatografía Liquida , Látex , Espectrometría de Masas en Tándem , Virus ARN/genética
16.
Biomolecules ; 13(3)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979510

RESUMEN

The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Animales , Ratones , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Células 3T3 NIH , Antiinfecciosos/farmacología , Antiinfecciosos/química , Anuros , Antibacterianos/farmacología , Antibacterianos/análisis , Pruebas de Sensibilidad Microbiana , Piel/química
17.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139464

RESUMEN

This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, ß and δ contribute to ROS production while PKC ßII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1ß release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Actinas/metabolismo , Trampas Extracelulares/metabolismo , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Elastasa Pancreática/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina Proteasas/metabolismo , Acetato de Tetradecanoilforbol/farmacología
18.
Front Mol Biosci ; 9: 824989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813822

RESUMEN

Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.

19.
Data Brief ; 43: 108433, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35859787

RESUMEN

Here we describe the proteome of the fungus Hemileia vastatrix by label free mass spectrometry (LC-MS/MS). H. vastatrix is the causal agent of coffee rust disease, causing great economic losses in this crop. The objective of our work was to identify H. vastatrix proteins potentially involved in host colonization and infection, by exploring the shotgun proteomics approach. A total of 742 proteins were identified and are associated with several crucial molecular functions, biological processes, and cellular components. The proteins identified contribute to a better understanding of the metabolism of the fungus and may help identify target proteins for the development of specific drugs in order to control coffee rust disease. All data can be accessed at the Centre for Computational Mass Spectrometry - MassIVE MSV000087665 -https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=cc71ad75f767451abe72dd1ce0019387.

20.
J Proteomics ; 261: 104575, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35351660

RESUMEN

Cowpea (Vigna unguiculata L. Walp) is a legume of great economic importance, however it is highly affected by nematodes. The present work aimed to identify proteins and genes involved in nematode resistance by proteomic and transcriptomic analysis. Plants of a genotype resistant (CE31) to root-knot nematode (Meloidogyne spp.) were collected 12 days after inoculation with Meloidogyne incognita and the total proteins and RNA were extracted from the root samples. Shotgun proteomic analysis was performed using an Orbitrap Elite mass spectrometer and the construction and sequencing of cDNA libraries were carried out in a Hi-Seq 2000 sequencing system. The proteomic and transcriptomic analyses revealed key processes involved in cowpea defense and some interesting candidates were further analyzed by RT-qPCR. Proteins and genes involved in essential biological processes were differentially accumulated such as, regulation of transcription, cell wall stiffening and microtubule-based process. However, the main defense strategies of Vigna unguiculata seem to be focused on the interaction of NBS-LRR and WRKY genes for the activation of R genes, production of protease inhibitors and maintenance of actin cytoskeleton. These are key processes that can culminate in the suppression of giant cell formation and consequently in the development of Meloidogyne incognita. SIGNIFICANCE: In this study, we identified proteins and transcripts regulated in cowpea resistant to the nematode Meloidogyne spp. upon inoculation. The results revealed key candidate genes involved in the activation of R genes, the production of protease inhibitors and maintenance of the actin cytoskeleton. These processes might be essential for cowpea resistance, as they can impede nematode nutrition, giant cell formation and consequently the development of Meloidogyne incognita.


Asunto(s)
Tylenchoidea , Vigna , Animales , Enfermedades de las Plantas , Raíces de Plantas/metabolismo , Inhibidores de Proteasas/metabolismo , Proteómica , Tylenchoidea/fisiología , Vigna/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA