Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 35(3): e21413, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33570785

RESUMEN

Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.


Asunto(s)
Trasplante de Médula Ósea , Supervivencia de Injerto/inmunología , Tolerancia Inmunológica/inmunología , Trasplante Homólogo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Trasplante de Médula Ósea/métodos , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas/métodos , Ratones , Ratones Endogámicos BALB C , Quimera por Trasplante/inmunología , Trasplante Homólogo/métodos
2.
Biomaterials ; 294: 122016, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702000

RESUMEN

Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.


Asunto(s)
Micelas , Oligonucleótidos , Distribución Tisular , Células Endoteliales , Polietilenglicoles/química , ARN Interferente Pequeño/genética , Hepatocitos
3.
Biomed Opt Express ; 13(7): 3723-3742, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35991909

RESUMEN

Research in translational medicine often requires high-resolution characterization techniques to visualize or quantify the fluorescent probes. For example, drug delivery systems contain fluorescent molecules enabling in vitro and in vivo tracing to determine biodistribution or plasma disappearance. Albeit fluorescence imaging systems with sufficient resolution exist, the sample preparation is typically too complex to image a whole organism of the size of a mouse. This article established a mesoscopic imaging technique utilizing a commercially available cryo-microtome and an in-house built episcopic imaging add-on to perform imaging during serial sectioning. Here we demonstrate that our automated red, green, blue (RGB) and fluorescence mesoscope can generate sequential block-face and 3-dimensional anatomical images at variable thickness with high quality of 6 µm × 6 µm pixel size. In addition, this mesoscope features a numerical aperture of 0.10 and a field-of-view of up to 21.6 mm × 27 mm × 25 mm (width, height, depth).

4.
Photoacoustics ; 26: 100361, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35541023

RESUMEN

Although multispectral optoacoustic tomography (MSOT) significantly evolved over the last several years, there is a lack of quantitative methods for analysing this type of image data. Current analytical methods characterise the MSOT signal in manually defined regions of interest outlining selected tissue areas. These methods demand expert knowledge of the sample anatomy, are time consuming, highly subjective and prone to user bias. Here we present our fully automated open-source MSOT cluster analysis toolkit Mcat that was designed to overcome these shortcomings. It employs a deep learning-based approach for initial image segmentation followed by unsupervised machine learning to identify regions of similar signal kinetics. It provides an objective and automated approach to quantify the pharmacokinetics and extract the biodistribution of biomarkers from MSOT data. We exemplify our generally applicable analysis method by quantifying liver function in a preclinical sepsis model whilst highlighting the advantages of our new approach compared to the severe limitations of existing analysis procedures.

5.
ACS Nano ; 15(7): 12298-12313, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34270899

RESUMEN

Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver.


Asunto(s)
Portadores de Fármacos , Micelas , Portadores de Fármacos/química , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Hígado
6.
EMBO Mol Med ; 13(10): e14436, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34472699

RESUMEN

Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.


Asunto(s)
Hepatopatías , Sepsis , Animales , Ratones , Infiltración Neutrófila , Fosfatidilinositol 3-Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Sepsis/tratamiento farmacológico
7.
ACS Nano ; 13(11): 12732-12742, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31647640

RESUMEN

Despite the rigidity of double-stranded DNA (dsDNA), its packaging is used to construct nonviral gene carriers due to its availability and the importance of its double-helix to elicit transcription. However, there is an increasing demand for more compact-sized carriers to facilitate tissue penetration, which may be easily fulfilled by using the more flexible single-stranded DNA (ssDNA) as an alternative template. Inspired by the adeno-associated virus (AAV) as a prime example of a transcriptionally active ssDNA system, we considered a methodology that can capture unpaired ssDNA within the polyplex micelle system (PM), an assembly of DNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-PLys). A micellar assembly retaining unpaired ssDNA was prepared by unpairing linearized pDNA with heat and performing polyion complexation on site with PEG-PLys. The PM thus formed had a compact and spherical shape, which was distinguishable from the rod-shaped PM formed from dsDNA, and still retained its ability to activate gene expression. Furthermore, we demonstrated that its capacity to encapsulate DNA was much higher than AAV, thereby potentially allowing the delivery of a larger variety of protein-encoding DNA. These features permit the ssDNA-loaded PM to easily penetrate the size-restricting stromal barrier after systemic application. Further, they can elicit gene expression in tumor cell nests of an intractable pancreatic cancer mouse model to achieve antitumor effects through suicide gene therapy. Thus, single-stranded DNA-packaged PM is appealing as a potential gene vector to tackle intractable diseases, particularly those with target delivery issues due to size-restriction barriers.


Asunto(s)
ADN de Cadena Simple/química , Dependovirus/genética , Técnicas de Transferencia de Gen , Neoplasias Pancreáticas/terapia , Polímeros/química , Células del Estroma/patología , Animales , Vectores Genéticos/genética , Humanos , Ratones , Micelas , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA