Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(2): 749-759, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37800279

RESUMEN

Empirical measurements of solution vapor pressure of ternary acetonitrile (MeCN) H2O-NaCl-MeCN mixtures were recorded, with NaCl concentrations ranging from zero to the saturation limit, and MeCN concentrations ranging from zero to an absolute mole fraction of 0.64. After accounting for speciation, the variability of the Henry's law coefficient at vapor-liquid equilibrium (VLE) of MeCN ternary mixtures decreased from 107% to 5.1%. Solute speciation was modeled using a mass action solution model that incorporates solute solvation and ion-pairing phenomena. Two empirically determined equilibrium constants corresponding to solute dissociation and ion pairing were utilized for each solute. When speciation effects were considered, the solid-liquid equilibrium of H2O-NaCl-MeCN mixtures appear to be governed by a simple saturation equilibrium constant that is consistent with the binary H2O-NaCl saturation coefficient. Further, our results indicate that the precipitation of NaCl in the MeCN ternary mixtures was not governed by changes in the dielectric constant. Our model indicates that the compositions of the salt-induced liquid-liquid equilibrium (LLE) boundary of the H2O-NaCl-MeCN mixture correspond to the binary plateau activity of MeCN, a range of concentrations over which the activity remains largely invariant in the binary water-MeCN system. Broader comparisons with other ternary miscible organic solvent (MOS) mixtures suggest that salt-induced liquid-liquid equilibrium exists if: (1) the solution displays a positive deviation from the ideal limits governed by Raoult's law; and (2) the minimum of the mixing free energy profile for the binary water-MOS system is organic-rich. This work is one of the first applications of speciation-based solution models to a ternary system, and the first that includes an organic solute.

2.
Environ Sci Technol ; 57(15): 6320-6330, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37027336

RESUMEN

Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.


Asunto(s)
Lagos , Litio , Litio/química , Lagos/química , Cloruro de Sodio , Sales (Química)/química
3.
Environ Sci Technol ; 57(39): 14747-14759, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37721998

RESUMEN

Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.


Asunto(s)
Lagos , Litio , Lagos/química , Litio/química , Cloruro de Sodio , Termodinámica , Cationes
4.
RSC Adv ; 10(49): 29516-29527, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35521115

RESUMEN

Twelve water miscible organic solvents (MOS): acetone, tetrahydrofuran, isopropanol, acetonitrile, dimethyl sulfoxide, 1,4-dioxane, dimethylacetamide, N-methyl-2-pyrrolidone, trifluoroethanol, isopropylamine, dimethylformamide, and dimethyl ether (DME) were used to produce ternary mixtures of water-NaCl-MOS relevant to MOS-driven fractional precipitation. The aqueous-phase composition of the ternary mixture at liquid-liquid equilibrium and liquid-solid endpoint was established through quantitative nuclear magnetic resonance and mass balance. The results highlight the importance of considering the hydrated concentrations of salts and suggest that at high salt concentrations and low MOS concentration, the salt concentration is governed by competition between the salt ions and MOS molecules. Under these conditions a LS phase boundary is established, over which one mole of salt is replaced by one mole of MOS (solute displacement). At higher MOS concentrations, MOS with higher water affinity deviate from the one-to-one solute exchange but maintain a LS boundary with a homogenous liquid phase, while MOS with lower water affinity form a liquid-liquid phase boundary. DME is found to function effectively as an MOS for fractional precipitation, precipitating 97.7% of the CaSO4 from a saturated solution, a challenging scalant. DME-driven water softening recycles the DME within the system improving the atom-efficiency over existing seawater desalination pretreatments by avoiding chemical consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA