Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106255

RESUMEN

Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Caenorhabditis elegans , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
2.
J Cell Sci ; 133(18)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32843580

RESUMEN

Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Edición Génica , Células HeLa , Humanos , Mitocondrias/genética , Reproducibilidad de los Resultados
3.
Proc Natl Acad Sci U S A ; 115(12): 2988-2993, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29440398

RESUMEN

The ATP synthase in human mitochondria is a membrane-bound assembly of 29 proteins of 18 kinds. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, and imported into the matrix of the organelle, where they are assembled into the complex with ATP6 and ATP8, the products of overlapping genes in mitochondrial DNA. Disruption of individual human genes for the nuclear-encoded subunits in the membrane portion of the enzyme leads to the formation of intermediate vestigial ATPase complexes that provide a description of the pathway of assembly of the membrane domain. The key intermediate complex consists of the F1-c8 complex inhibited by the ATPase inhibitor protein IF1 and attached to the peripheral stalk, with subunits e, f, and g associated with the membrane domain of the peripheral stalk. This intermediate provides the template for insertion of ATP6 and ATP8, which are synthesized on mitochondrial ribosomes. Their association with the complex is stabilized by addition of the 6.8 proteolipid, and the complex is coupled to ATP synthesis at this point. A structure of the dimeric yeast Fo membrane domain is consistent with this model of assembly. The human 6.8 proteolipid (yeast j subunit) locks ATP6 and ATP8 into the membrane assembly, and the monomeric complexes then dimerize via interactions between ATP6 subunits and between 6.8 proteolipids (j subunits). The dimers are linked together back-to-face by DAPIT (diabetes-associated protein in insulin-sensitive tissue; yeast subunit k), forming long oligomers along the edges of the cristae.


Asunto(s)
Membranas Mitocondriales/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Humanos , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Mutación , Consumo de Oxígeno , Conformación Proteica , Subunidades de Proteína
4.
Proc Natl Acad Sci U S A ; 114(13): 3409-3414, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289229

RESUMEN

The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Permeabilidad
5.
Methods Mol Biol ; 2778: 185-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478279

RESUMEN

All but a few mitochondrial proteins are translated into the cytosol and imported in via complicated and varied pathways. These processes occur over short time frames and, as such, are difficult to monitor with classical approaches such as Western blotting or autoradiography that require sample collection at discrete time points. The development of an assay based on a split version of the small luciferase-Mitoluc-has allowed us to monitor the import of proteins into mitochondria in high resolution and real time (Pereira et al., J Mol Biol 431:1689-1699, 2019). Luminescence measurements are acquired using a plate reader in the order of seconds. This allows scores of experiments to be conducted in parallel in a single multi-well plate and permits kinetic analysis yielding information about import mechanisms (Ford et al., Elife 11:e75426, 2022).


Asunto(s)
Luminiscencia , Mitocondrias , Cinética , Mitocondrias/metabolismo , Transporte de Proteínas , Mediciones Luminiscentes
6.
Elife ; 112022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674314

RESUMEN

Nearly all mitochondrial proteins need to be targeted for import from the cytosol. For the majority, the first port of call is the translocase of the outer membrane (TOM complex), followed by a procession of alternative molecular machines, conducting transport to their final destination. The pre-sequence translocase of the inner membrane (TIM23-complex) imports proteins with cleavable pre-sequences. Progress in understanding these transport mechanisms has been hampered by the poor sensitivity and time resolution of import assays. However, with the development of an assay based on split NanoLuc luciferase, we can now explore this process in greater detail. Here, we apply this new methodology to understand how ∆ψ and ATP hydrolysis, the two main driving forces for import into the matrix, contribute to the transport of pre-sequence-containing precursors (PCPs) with varying properties. Notably, we found that two major rate-limiting steps define PCP import time: passage of PCP across the outer membrane and initiation of inner membrane transport by the pre-sequence - the rates of which are influenced by PCP size and net charge. The apparent distinction between transport through the two membranes (passage through TOM is substantially complete before PCP-TIM engagement) is in contrast with the current view that import occurs through TOM and TIM in a single continuous step. Our results also indicate that PCPs spend very little time in the TIM23 channel - presumably rapid success or failure of import is critical for maintenance of mitochondrial fitness.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Luciferasas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA