Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Inorg Chem ; 60(21): 15835-15845, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014639

RESUMEN

Dinitrosyl iron complexes (DNICs) are spontaneously and rapidly generated in cells. Their assembly requires nitric oxide (NO), biothiols, and nonheme iron, either labile iron or iron-sulfur clusters. Despite ubiquitous detection by electron paramagnetic resonance in NO-producing cells, the DNIC's chemical biology remains only partially understood. In this Forum Article, we address the reaction mechanisms for endogenous DNIC formation, with a focus on a labile iron pool as the iron source. The capability of DNICs to promote S-nitrosation is discussed in terms of S-nitrosothiol generation associated with the formation and chemical reactivity of DNICs. We also highlight how elucidation of the chemical reactivity and the dynamics of DNICs combined with the development of detection/quantification methods can provide further information regarding their participation in physiological and pathological processes.


Asunto(s)
Hierro
2.
Nitric Oxide ; 103: 31-46, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32721555

RESUMEN

In this article we discuss the fundamental chemical and physical properties of NO and related nitrogen oxides (NO2-, NO2, N2O3, etc.) under solution conditions relevant to mammalian biology.


Asunto(s)
Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Humanos , Óxido Nítrico/química , Soluciones
3.
Inorg Chem ; 59(23): 17224-17233, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33180482

RESUMEN

We describe here nitric oxide dioxygenation (NOD) by the dioxygen manganese porphyrin adducts Mn(Por)(η2-O2) (Por2- = the meso-tetra-phenyl or meso-tetra-p-tolylporphyrinato dianions, TPP2- and TTP2-). The Mn(Por)(η2-O2) was assembled by adding O2 to sublimed layers of MnII(Por). When NO was introduced and the temperature was slowly raised from 80 to 120 K, new IR bands with correlated intensities grew concomitant with depletion of the υ(O2) band. Isotope labeling experiments with 18O2, 15NO, and N18O combined with DFT calculations provide the basis for identifying the initial intermediates as the six-coordinate peroxynitrito complexes (ON)Mn(Por)(η1-OONO). Further warming to room temperature led to formation of the nitrato complexes Mn(Por)(η1-ONO2), thereby demonstrating the ability of these metal centers to promote NOD. However, comparable quantities of the nitrito complexes Mn(Por)(η1-ONO) are also formed. In contrast, when the analogous reactions were initiated with the weak σ-donor ligand tetrahydrofuran or dimethyl sulfide present in the layers, formation of Mn(Por)(η1-ONO2) is strongly favored (∼90%). The latter are formed via a 6-coordinate intermediate (L)Mn(Por)(η1-ONO2) (L = THF or DMS) that loses L upon warming. These reaction patterns are compared to those observed previously with analogous iron and cobalt porphyrin complexes.

4.
Inorg Chem ; 58(19): 13446-13456, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31535856

RESUMEN

Dinitrosyl iron complexes (DNICs) are ubiquitous in mammalian cells and tissues producing nitric oxide (NO) and have been argued to play key physiological and pathological roles. Nonetheless, the mechanism and dynamics of DNIC formation in aqueous media remain only partially understood. Here, we report a stopped-flow kinetics and density functional theory (DFT) investigation of the reaction of NO with ferrous ions and the low molecular weight thiols glutathione (GSH) and cysteine (CysSH) as well as the peptides WCGPC and WCGPY to produce DNICs in pH 7.4 aqueous media. With each thiol, a two-stage reaction pattern is observed. The first stage involves several rapidly established pre-equilibria leading to a ferrous intermediate concluded to have the composition FeII(NO)(RS)2(H2O)x (C). In the second stage, C undergoes rate-limiting, unimolecular autoreduction to give thiyl radical (RS•) plus the mononitrosyl Fe(I) complex FeI(NO)(RS)(H2O)x following the reactivity order of CysSH > WCGPC > WCGPY > GSH. Time course simulations using the experimentally determined kinetics parameters demonstrate that, at a NO flux characteristic of inflammation, DNICs will be rapidly formed from intracellular levels of ferrous iron and thiols. Furthermore, the proposed mechanism offers a novel pathway for S-nitroso thiol (RSNO) formation in a biological environment.

5.
Inorg Chem ; 58(21): 14608-14616, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31613604

RESUMEN

The reaction of complex [Pt(Me)(DMSO)(pbz)], 1, (pbz = 2-(2-pyridyl)benzimidazolate) with [PtMe(Cl)(DMSO)2], B, followed by addition of bis(diphenylphosphino)acetylene (dppac), gave the novel tetranuclear platinum complex [Pt4Me4(µ-dppac)2(pbz)2Cl2], 2, bearing both the pbz and dppac ligands. In this structure, the pbz ligands are both chelating and bridging to stabilize the tetraplatinum framework. The tetranuclear Pt(II) complex was fully characterized by NMR spectroscopy, X-ray crystallography, and mass spectrometry, and its electronic structure was investigated and supported by DFT calculations.

6.
Inorg Chem ; 58(16): 11066-11075, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31369245

RESUMEN

Multiphoton excitation allows one to access high energy excited states and perform valuable tasks in biological systems using tissue penetrating near-infrared (NIR) light. Here, we describe new photoactive manganese tricarbonyl complexes incorporating the ligand 4'-p-N,N-bis(2-hydroxyethyl)amino-benzyl-2,2':6',2″-terpyridine (TPYOH), which can serve as an antenna for two photon NIR excitation. Solutions of Mn(CO)3(TPYOH)X (X = Br- or CF3SO3-) complexes are very photoactive toward CO release under visible light excitation (405 nm, 451 nm). The same responses were also triggered by multiphoton excitation at 750 and 800 nm. In this context, we discuss the potential applications of these complexes as visible/NIR light photoactivated carbon monoxide releasing moieties (photoCORMs). We also report the isolation and crystal structures of the TPYOH complexes Mn(TPYOH)Cl2 and [Mn(TPYOH)2](CF3SO3)2, to illustrate a possible photolysis product(s).

7.
Inorg Chem ; 57(9): 4795-4798, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633843

RESUMEN

The reaction of dimethyl sulfide (DMS) and tetrahydrothiophene (THT) with thin, amorphous layers of the nitrato complexes Fe(Por)(η2-O2NO) (Por = meso-tetraphenylporphyrinato dianion or meso-tetra- p-tolylporphyrinato dianion) at low temperature leads to formation of the corresponding six-coordinate complexes Fe(Por)(L)(η1-ONO2) (L = DMS, THT) as characterized by Fourier transform infrared and optical spectroscopy measurements. Adduct formation was accompanied by bidentate-to-monodentate linkage isomerization of the nitrato ligand, with the FeIII center remaining in a high-spin electronic state. These adducts are thermally unstable; warming to room temperature restores the initial Fe(Por)(η2-O2NO) species.

8.
Inorg Chem ; 57(3): 1311-1331, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29323880

RESUMEN

Fifteen water-soluble rhenium compounds of the general formula [Re(CO)3(NN)(PR3)]+, where NN is a diimine ligand and PR3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1O2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC50 value of 6 µM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1O2.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Carboxílicos/farmacología , Complejos de Coordinación/farmacología , Fosfinas/farmacología , Renio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ácidos Carboxílicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Fosfinas/química , Procesos Fotoquímicos , Renio/química , Solubilidad , Relación Estructura-Actividad , Agua/química
9.
Chem Soc Rev ; 46(1): 21-39, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27722688

RESUMEN

The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value. The neuro- and reproductive system toxicity of CS2 has been documented from its long-term use in the viscose rayon industry. CS2 is also used in the production of dithiocarbamates (DTCs), which are potent fungicides and pesticides, thus raising concern that CS2 may be an environmental toxin. However, DTCs also have recognized medicinal use in the treatment of heavy metal poisonings as well as having potency for reducing inflammation. Three known small molecule bioregulators (SMBs) nitric oxide, carbon monoxide, and hydrogen sulfide were initially viewed as environmental toxins. Yet each is now recognized as having intricate, though not fully elucidated, biological functions at concentration regimes far lower than the toxic doses. The literature also implies that the mammalian chemical biology of CS2 has broader implications from inflammatory states to the gut microbiome. On these bases, we suggest that the very nature of CS2 poisoning may be related to interrupting or overwhelming relevant regulatory or signaling process(es), much like other SMBs.


Asunto(s)
Disulfuro de Carbono , Animales , Disulfuro de Carbono/efectos adversos , Disulfuro de Carbono/metabolismo , Disulfuro de Carbono/uso terapéutico , Humanos
10.
Inorg Chem ; 56(11): 6094-6104, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28260387

RESUMEN

We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO)5ReMn(CO)3(L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σMM → πL*) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

11.
Inorg Chem ; 55(19): 9517-9520, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27643944

RESUMEN

Low-temperature in situ Fourier transform infrared and UV-vis measurements show that trimethylphosphine (PMe3) reacts with microporous layers of FeII(TTP)(NO) (TTP = meso-tetra-p-tolylporphyrinato dianion; NO = nitric oxide) to form the previously unknown six-coordinate complex FeII(TTP)(PMe3)(NO). Upon warming this compound to room temperature in the presence of excess phosphine, the NO ligand is completely replaced by phosphine, resulting in formation of the bis(trimethylphosphine) complex FeII(TTP)(PMe3)2. Simultaneously, the NO released oxidizes free PMe3 to the corresponding phosphine oxide (OPMe3) with concomitant formation of nitrous oxide (N2O).

12.
Inorg Chem ; 60(21): 15831-15834, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724728
13.
J Am Chem Soc ; 137(1): 328-36, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25479566

RESUMEN

Kinetics studies provide mechanistic insight regarding the formation of dinitrosyl iron complexes (DNICs) now viewed as playing important roles in the mammalian chemical biology of the ubiquitous bioregulator nitric oxide (NO). Reactions in deaerated aqueous solutions containing FeSO4, cysteine (CysSH), and NO demonstrate that both the rates and the outcomes are markedly pH dependent. The dinuclear DNIC Fe2(µ-CysS)2(NO)4, a Roussin's red salt ester (Cys-RSE), is formed at pH 5.0 as well as at lower concentrations of cysteine in neutral pH solutions. The mononuclear DNIC Fe(NO)2(CysS)2(-) (Cys-DNIC) is produced from the same three components at pH 10.0 and at higher cysteine concentrations at neutral pH. The kinetics studies suggest that both Cys-RSE and Cys-DNIC are formed via a common intermediate Fe(NO)(CysS)2(-). Cys-DNIC and Cys-RSE interconvert, and the rates of this process depend on the cysteine concentration and on the pH. Flash photolysis of the Cys-RSE formed from Fe(II)/NO/cysteine mixtures in anaerobic pH 5.0 solution led to reversible NO dissociation and a rapid, second-order back reaction with a rate constant kNO = 6.9 × 10(7) M(-1) s(-1). In contrast, photolysis of the mononuclear-DNIC species Cys-DNIC formed from Fe(II)/NO/cysteine mixtures in anaerobic pH 10.0 solution did not labilize NO but instead apparently led to release of the CysS(•) radical. These studies illustrate the complicated reaction dynamics interconnecting the DNIC species and offer a mechanistic model for the key steps leading to these non-heme iron nitrosyl complexes.


Asunto(s)
Cisteína/química , Hierro/química , Óxidos de Nitrógeno/química , Agua/química , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Fotólisis , Soluciones
14.
Acc Chem Res ; 47(5): 1503-12, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24745655

RESUMEN

This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels would reduce society's dependence on nonrenewable petroleum resources while easing the atmospheric carbon dioxide burden. The major nonfood component of biomass is lignocellulose, a matrix of the biopolymers cellulose, hemicellulose, and lignin. New approaches are needed to effect facile conversion of lignocellulose solids to liquid fuels and to other chemical precursors without the formation of intractable side products and with sufficient specificity to give economically sustainable product streams. We have devised a novel catalytic system whereby the renewable feedstocks cellulose, organosolv lignin, and even lignocellulose composites such as sawdust are transformed into organic liquids. The reaction medium is supercritical methanol (sc-MeOH), while the catalyst is a copper-doped porous metal oxide (PMO) prepared from inexpensive, Earth-abundant starting materials. This transformation occurs in a single stage reactor operating at 300-320 °C and 160-220 bar. The reducing equivalents for these transformations are derived by the reforming of MeOH (to H2 and CO), which thereby serves as a "liquid syngas" in the present case. Water generated by deoxygenation processes is quickly removed by the water-gas shift reaction. The Cu-doped PMO serves multiple purposes, catalyzing substrate hydrogenolysis and hydrogenation as well as the methanol reforming and shift reactions. This one-pot "UCSB process" is quantitative, giving little or no biochar residual. Provided is an overview of these catalysis studies beginning with reactions of the model compound dihydrobenzofuran that help define the key processes occurring. The initial step is phenyl-ether bond hydrogenolysis, and this is followed by aromatic ring hydrogenation. The complete catalytic disassembly of the more complex organosolv lignin to monomeric units, largely propyl-cyclohexanol derivatives is then described. Operational indices based on (1)H NMR analysis are also presented that facilitate holistic evaluation of these product streams that within several hours consist largely of propyl-cyclohexanol derivatives. Lastly, we describe the application of this methodology with several types of wood (pine sawdust, etc.) and with cellulose fibers. The product distribution, albeit still complex, displays unprecedented selectivity toward the production of aliphatic alcohols and methylated derivatives thereof. These observations clearly indicate that the Cu-doped solid metal oxide catalyst combined with sc-MeOH is capable of breaking down the complex biomass derived substrates to markedly deoxygenated monomeric units with increased hydrogen content. Possible implementations of this promising system on a larger scale are discussed.


Asunto(s)
Biomasa , Compuestos Orgánicos/química , Madera/química , Catálisis , Lignina/química , Solventes
15.
J Am Chem Soc ; 136(1): 513-9, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24328325

RESUMEN

Described is a kinetics and computational study of the reaction of NO with the intramolecular bridged P/B frustrated Lewis pair (FLP) endo-2-(dimesitylphosphino)-exo-3-bis(pentafluorophenyl)boryl-norbornane to give a persistent FLP-NO aminoxyl radical. This reaction follows a second-order rate law, first-order in [FLP] and first-order in [NO], and is markedly faster in toluene than in dichloromethane. By contrast, the NO oxidation of the phosphine base 2-(dimesitylphosphino)norbornene to the corresponding phosphine oxide follows a third-order rate law, first-order in [phosphine] and second-order in [NO]. Formation of the FLP-NO radical in toluene occurs with a ΔH(‡) of 13 kcal mol(-1), a feature that conflicts with the computation-based conclusion that NO addition to a properly oriented B/P pair should be nearly barrierless. Since the calculations show the B/P pair in the most stable solution structure of this FLP to have an unfavorable orientation for concerted reaction, the observed barrier is rationalized in terms of the reversible formation of a [B]-NO complex intermediate followed by a slower isomerization-ring closure step to the cyclic aminoxyl radical. This combined kinetics/theoretical study for the first time provides insight into mechanistic details for the activation of a diatomic molecule by a prototypical FLP.

16.
J Am Chem Soc ; 136(6): 2192-5, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24151929

RESUMEN

Carbon disulfide, a potentially therapeutic small molecule, is generated via oxidative cleavage of 1,1-dithiooxalate (DTO) photosensitized by CdSe quantum dots (QDs). Irradiation of DTO-QD conjugates leads to λ(irr) independent photooxidation with a quantum yield of ~4% in aerated pH 9 buffer solution that drops sharply in deaerated solution. Excess DTO is similarly decomposed, indicating labile exchange at the QD surfaces and a photocatalytic cycle. Analogous photoreaction occurs with the O-tert-butyl ester (t)BuDTO in nonaqueous media. We propose that oxidation is initiated by hole transfer from photoexcited QD to surface DTO and that these substrates are a promising class of photocleavable ligands for modifying QD surface coordination.

17.
J Phys Chem A ; 118(51): 12184-91, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25405612

RESUMEN

We describe the use of cadmium telluride quantum dots (CdTe QDs) as antennas for the photosensitization of nitric oxide release from a ruthenium nitrosyl complex with visible light excitation. The CdTe QDs were capped with mercaptopropionic acid to make them water-soluble, and the ruthenium nitrosyl complex was cis-[Ru(NO)(4-ampy)(bpy)2](3+) (Ru-NO; bpy is 2,2'-bipyridine, and 4-ampy is 4-aminopyridine). Solutions of these two components demonstrated concentration-dependent quenching of the QD photoluminescence (PL) as well as photoinduced release of NO from Ru-NO when irradiated by 530 nm light. A NO release enhancement of ∼8 times resulting from this association was observed under longer wavelength excitation in visible light range. The dynamics of the quenching determined by both PL and transient absorption measurements were probed by ultrafast flash photolysis. A charge transfer mechanism is proposed to explain the quenching of the QD excited states as well as the photosensitized release of NO from Ru-NO.


Asunto(s)
Óxidos de Nitrógeno/química , Procesos Fotoquímicos , Puntos Cuánticos/química , Rutenio/química , Compuestos de Cadmio/química , Telurio/química
18.
Dalton Trans ; 53(27): 11264-11275, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38695514

RESUMEN

Efforts to find compounds selectively affecting cancer cells while sparing normal ones have continued to grow. Nitric oxide (NO) is critical in physiology and pathology, including cancer. It influences cellular processes like proliferation, apoptosis, and angiogenesis. The intricate interaction of NO with cancer cells offers innovative treatment possibilities, but its effects can vary by concentration and site. Ruthenium complexes capable of releasing NO upon stimulation show for this purpose. These versatile compounds can also enhance photodynamic therapy (PDT), a light-activated approach, which induces cellular damage. Ruthenium-based photosensitizers (PSs), delivering NO and producing reactive oxygen species (ROS), offer a novel strategy for improved cancer treatments. In this study, a nitro-ruthenium porphyrin conjugate: {TPyP[Ru(NO2)(bpy)2]4}(PF6)4, designated RuNO2TPyP, which releases NO upon irradiation, was investigated for its effects on lung cells (non-tumor MRC-5 and tumor A549) in 2D and 3D cell cultures. The findings suggest that this complex has potential for PDT treatment in lung cancer, as it exhibits photocytotoxicity at low concentrations without causing cytotoxicity to normal lung cells. Moreover, treatment of cells with RuNO2TPyP followed by light irradiation (4 J cm-2) can induce apoptosis, generate ROS, promote intracellular NO formation, and has anti-migratory effects. Additionally, the complex can modify tumor cell structures and induce photocytotoxicity and apoptosis in a 3D culture. These outcomes are attributed to the internalization of the complex and its subsequent activation upon light irradiation, resulting in NO release and singlet oxygen production.


Asunto(s)
Complejos de Coordinación , Luz , Neoplasias Pulmonares , Óxido Nítrico , Fármacos Fotosensibilizantes , Rutenio , Óxido Nítrico/metabolismo , Humanos , Rutenio/química , Rutenio/farmacología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Porfirinas/química , Porfirinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Metaloporfirinas/química , Metaloporfirinas/farmacología , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
19.
20.
J Am Chem Soc ; 135(48): 18145-52, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24245494

RESUMEN

Novel materials for the phototherapeutic release of the bioregulator nitric oxide (nitrogen monoxide) are described. Also reported is a method for scanning these materials with a focused NIR beam to induce photouncaging while minimizing damage from local heating. The new materials consist of poly(dimethylsiloxane) composites with near-infrared-to-visible upconverting nanoparticles (UCNPs) that are cast into a biocompatible polymer disk (PD). These PDs are then impregnated with the photochemical nitric oxide precursor Roussin's black salt (RBS) to give UCNP_RBS_PD devices that generate NO when irradiated with 980 nm light. When the UCNP_RBS_PD composites were irradiated with NIR light through filters composed of porcine tissue, physiologically relevant NO concentrations were released, thus demonstrating the potential of such devices for minimally invasive phototherapeutic applications.


Asunto(s)
Dimetilpolisiloxanos/química , Sistemas de Liberación de Medicamentos/instrumentación , Depuradores de Radicales Libres/administración & dosificación , Nanopartículas/química , Óxido Nítrico/administración & dosificación , Animales , Diseño de Equipo , Filtración/instrumentación , Compuestos de Hierro/química , Luz , Luminiscencia , Modelos Moleculares , Compuestos Nitrosos/química , Fotólisis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA