Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700218

RESUMEN

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Adhesinas Bacterianas/metabolismo , Adhesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Enfermedades Intestinales , Polisacáridos/metabolismo
2.
BMC Bioinformatics ; 24(1): 209, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208588

RESUMEN

BACKGROUND: Cluster and transmission analysis utilising pairwise SNP distance are increasingly used in genomic epidemiological studies. However, current methods are often challenging to install and use, and lack interactive functionalities for easy data exploration. RESULTS: GraphSNP is an interactive visualisation tool running in a web browser that allows users to rapidly generate pairwise SNP distance networks, investigate SNP distance distributions, identify clusters of related organisms, and reconstruct transmission routes. The functionality of GraphSNP is demonstrated using examples from recent multi-drug resistant bacterial outbreaks in healthcare settings. CONCLUSIONS: GraphSNP is freely available at https://github.com/nalarbp/graphsnp . An online version of GraphSNP, including demonstration datasets, input templates, and quick start guide is available for use at https://graphsnp.fordelab.com .


Asunto(s)
Genómica , Programas Informáticos , Genómica/métodos , Navegador Web , Genoma , Brotes de Enfermedades
3.
Clin Infect Dis ; 76(3): e1277-e1284, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36056896

RESUMEN

BACKGROUND: Prospective whole-genome sequencing (WGS)-based surveillance may be the optimal approach to rapidly identify transmission of multi-drug resistant (MDR) bacteria in the healthcare setting. METHODS: We prospectively collected methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Acinetobacter baumannii (CRAB), extended-spectrum beta-lactamase (ESBL-E), and carbapenemase-producing Enterobacterales (CPE) isolated from blood cultures, sterile sites, or screening specimens across three large tertiary referral hospitals (2 adult, 1 paediatric) in Brisbane, Australia. WGS was used to determine in silico multi-locus sequence typing (MLST) and resistance gene profiling via a bespoke genomic analysis pipeline. Putative transmission events were identified by comparison of core genome single nucleotide polymorphisms (SNPs). Relevant clinical meta-data were combined with genomic analyses via customised automation, collated into hospital-specific reports regularly distributed to infection control teams. RESULTS: Over 4 years (April 2017 to July 2021) 2660 isolates were sequenced. This included MDR gram-negative bacilli (n = 293 CPE, n = 1309 ESBL), MRSA (n = 620), and VRE (n = 433). A total of 379 clinical reports were issued. Core genome SNP data identified that 33% of isolates formed 76 distinct clusters. Of the 76 clusters, 43 were contained to the 3 target hospitals, suggesting ongoing transmission within the clinical environment. The remaining 33 clusters represented possible inter-hospital transmission events or strains circulating in the community. In 1 hospital, proven negligible transmission of non-multi-resistant MRSA enabled changes to infection control policy. CONCLUSIONS: Implementation of routine WGS for MDR pathogens in clinical laboratories is feasible and can enable targeted infection prevention and control interventions.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Adulto , Humanos , Niño , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tipificación de Secuencias Multilocus , Infección Hospitalaria/epidemiología , Staphylococcus aureus Resistente a Meticilina/genética , Centros de Atención Terciaria
4.
Antimicrob Agents Chemother ; 66(1): e0214621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34780264

RESUMEN

Escherichia coli ST131 is a recently emerged antibiotic resistant clone responsible for high rates of urinary tract and bloodstream infections. Despite its global dominance, the precise mechanisms that have driven the rapid dissemination of ST131 remain unknown. Here, we show that the plasmid-associated resistance gene encoding the AAC(6')-Ib-cr enzyme that inactivates the fluoroquinolone (FQ) antibiotic ciprofloxacin is present in >70% of strains from the most rapidly expanding subgroup of multidrug resistant ST131. Using a series of genome-edited and plasmid-cured isogenic strains, we demonstrate that the aac(6')-Ib-cr gene confers a selective advantage on ST131 in the presence of ciprofloxacin, even in strains containing chromosomal GyrA and ParC FQ-resistance mutations. Further, we identify a pattern of emerging carbapenem resistance in other common E. coli clones carrying both aac(6')-Ib-cr and chromosomal FQ-resistance mutations, suggesting this dual resistance combination may also impart a selective advantage on these non-ST131 antibiotic resistant lineages.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
5.
J Clin Microbiol ; 60(11): e0101222, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314799

RESUMEN

The application of direct metagenomic sequencing from positive blood culture broth may solve the challenges of sequencing from low-bacterial-load blood samples in patients with sepsis. Forty prospectively collected blood culture broth samples growing Gram-negative bacteria were extracted using commercially available kits to achieve high-quality DNA. Species identification via metagenomic sequencing and susceptibility prediction via a machine-learning algorithm (AREScloud) were compared to conventional methods and other rapid diagnostic platforms (Accelerate Pheno and blood culture identification [BCID] panel). A two-kit method (using MolYsis Basic and Qiagen DNeasy UltraClean kits) resulted in optimal extractions. Taxonomic profiling by direct metagenomic sequencing matched conventional identification in 38/40 (95%) samples. In two polymicrobial samples, a second organism was missed by sequencing. Prediction models were able to accurately infer susceptibility profiles for 6 common pathogens against 17 antibiotics, with an overall categorical agreement (CA) of 95% (increasing to >95% for 5/6 of the most common pathogens, if Klebsiella oxytoca was excluded). The performance of whole-genome sequencing (WGS)-antimicrobial susceptibility testing (AST) was suboptimal for uncommon pathogens (e.g., Elizabethkingia) and some ß-lactamase inhibitor antibiotics (e.g., ticarcillin-clavulanate). The time to pathogen identification was the fastest with BCID (1 h from blood culture positivity). Accelerate Pheno provided a susceptibility result in approximately 8 h. Illumina-based direct sequencing methods provided results in time frames similar to those of conventional culture-based methods. Direct metagenomic sequencing from blood cultures for pathogen detection and susceptibility prediction is feasible. Additional work is required to optimize algorithms for uncommon species and complex resistance genotypes as well as to streamline methods to provide more rapid results.


Asunto(s)
Cultivo de Sangre , Ácidos Nucleicos , Cultivo de Sangre/métodos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Fenotipo
6.
J Antimicrob Chemother ; 77(11): 2933-2936, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35880750

RESUMEN

OBJECTIVES: To develop instrument-free point-of-care methods using recombinase polymerase amplification (RPA) technology coupled with a simple lateral flow detection system to detect Neisseria gonorrhoeae and susceptibility to ciprofloxacin. METHODS: For identification of gonococcal infection, an RPA-based method was developed targeting the gonococcal porA pseudogene (NG-porA-RPA). For ciprofloxacin susceptibility, predictive WT sequences at codons 91 and 95 of the gonococcal gyrA DNase gene were targeted. Given the known complexities of SNP detection using RPA (e.g. the ability to accommodate mismatches) we trialled several different assays incorporating various additional non-template mismatches in the oligonucleotide sequences to reduce affinity for the mutant (resistant) gyrA sequences. Assays were evaluated using a bank of N. gonorrhoeae (n = 10) and non-gonococcal (n = 5) isolates and a panel of N. gonorrhoeae nucleic acid amplification test (NAAT)-positive clinical sample extracts (n = 40). RESULTS: The NG-porA-RPA assay was specific to N. gonorrhoeae and provided a positive percentage agreement (PPA) of 87.5% (35/40) compared with a commercial N. gonorrhoeae NAAT when applied to the 40 clinical sample extracts. For gyrA, the non-template bases successfully reduced banding intensity for double-mutant strains (mutations at both 91 and 95), but not for rarer single-mutant (91 only) strains. The most promising gyrA assay, NG-gyrA-RPA08, correctly detected 83% (25/30) of infections from NAAT-positive clinical samples confirmed to have WT gyrA sequences based on Sanger sequencing. CONCLUSIONS: These proof-of-concept data show that RPA technology has considerable promise for detecting N. gonorrhoeae and associated antibiotic susceptibility and would offer a diagnostic-based stewardship strategy identified as urgently needed by the WHO.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , Ciprofloxacina/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Gonorrea/diagnóstico
7.
J Antimicrob Chemother ; 77(9): 2448-2455, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35724128

RESUMEN

BACKGROUND: Urosepsis caused by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli is increasing worldwide. Carbapenems are commonly recommended for the treatment of ESBL infections; however, to minimize the emergence of carbapenem resistance, interest in alternative treatments has heightened. OBJECTIVES: This study compared pharmacodynamics of piperacillin/tazobactam versus meropenem against ESBL-producing and non-producing E. coli clinical isolates. METHODS: E. coli isolates, obtained from national reference laboratory in Bangladesh, were characterized by phenotypic tests, WGS, susceptibility tests and mutant frequency analysis. Three ESBL-producing and two non-producing E. coli were exposed to piperacillin/tazobactam (4.5 g, every 6 h and every 8 h, 30 min infusion) and meropenem (1 g, every 8 h, 30 min infusion) in a hollow-fibre infection model over 7 days. RESULTS: Piperacillin/tazobactam regimens attained ∼4-5 log10 cfu/mL bacterial killing within 24 h and prevented resistance emergence over the experiment against ESBL-producing and non-producing E. coli. However, compared with 8 hourly meropenem, the 6 hourly piperacillin/tazobactam attained ∼1 log10 lower bacterial kill against one of three ESBL-producing E. coli (CTAP#173) but comparable killing for the other two ESBL-producing (CTAP#168 and CTAP#169) and two non-producing E. coli (CTAP#179 and CTAP#180). The 6 hourly piperacillin/tazobactam regimen attained ∼1 log10 greater bacterial kill compared with the 8 hourly regimen against CTAP#168 and CTAP#179 at 24 h. CONCLUSIONS: Our study suggests piperacillin/tazobactam may be a potential alternative to carbapenems to treat urosepsis caused by ESBL-producing E. coli, although clinical trials with robust design are needed to confirm non-inferiority of outcome.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/uso terapéutico , Carbapenémicos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Humanos , Meropenem/farmacología , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Ácido Penicilánico/farmacología , Ácido Penicilánico/uso terapéutico , Piperacilina , Combinación Piperacilina y Tazobactam/uso terapéutico , beta-Lactamasas
8.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032366

RESUMEN

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Mutación , Mycobacterium tuberculosis , Nitroimidazoles/farmacología , Nitrorreductasas , Oxazoles/farmacología , Ingeniería de Proteínas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Polimorfismo Genético
9.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32404435

RESUMEN

Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple , Infecciones Bacterianas/microbiología , Humanos
10.
Clin Infect Dis ; 72(12): e1122-e1129, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33354717

RESUMEN

Despite the accepted dogma that antibiotic use is the largest contributor to antimicrobial resistance (AMR) and human microbiome disruption, our knowledge of specific antibiotic-microbiome effects remains basic. Detection of associations between new or old antimicrobials and specific AMR burden is patchy and heterogeneous. Various microbiome analysis tools are available to determine antibiotic effects on microbial communities in vivo. Microbiome analysis of treatment groups in antibiotic clinical trials, powered to measure clinically meaningful endpoints would greatly assist the antibiotic development pipeline and clinician antibiotic decision making.


Asunto(s)
Antiinfecciosos , Microbiota , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Ensayos Clínicos como Asunto , Farmacorresistencia Microbiana , Humanos , Microbiota/genética
11.
Clin Infect Dis ; 73(11): e4531-e4538, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32772111

RESUMEN

BACKGROUND: Diphtheria is a potentially fatal respiratory disease caused by toxigenic Corynebacterium diphtheriae. Although resistance to erythromycin has been recognized, ß-lactam resistance in toxigenic diphtheria has not been described. Here, we report a case of fatal respiratory diphtheria caused by toxigenic C. diphtheriae resistant to penicillin and all other ß-lactam antibiotics, and describe a novel mechanism of inducible carbapenem resistance associated with the acquisition of a mobile resistance element. METHODS: Long-read whole-genome sequencing was performed using Pacific Biosciences Single Molecule Real-Time sequencing to determine the genome sequence of C. diphtheriae BQ11 and the mechanism of ß-lactam resistance. To investigate the phenotypic inducibility of meropenem resistance, short-read sequencing was performed using an Illumina NextSeq500 sequencer on the strain both with and without exposure to meropenem. RESULTS: BQ11 demonstrated high-level resistance to penicillin (benzylpenicillin minimum inhibitory concentration [MIC] ≥ 256 µg/ml), ß-lactam/ß-lactamase inhibitors and cephalosporins (amoxicillin/clavulanic acid MIC ≥ 256 µg/mL; ceftriaxone MIC ≥ 8 µg/L). Genomic analysis of BQ11 identified acquisition of a novel transposon carrying the penicillin-binding protein (PBP) Pbp2c, responsible for resistance to penicillin and cephalosporins. When strain BQ11 was exposed to meropenem, selective pressure drove amplification of the transposon in a tandem array and led to a corresponding change from a low-level to a high-level meropenem-resistant phenotype. CONCLUSIONS: We have identified a novel mechanism of inducible antibiotic resistance whereby isolates that appear to be carbapenem susceptible on initial testing can develop in vivo resistance to carbapenems with repeated exposure. This phenomenon could have significant implications for the treatment of C. diphtheriae infection, and may lead to clinical failure.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Corynebacterium diphtheriae/genética , Difteria/tratamiento farmacológico , Humanos , Lactamas/uso terapéutico , Pruebas de Sensibilidad Microbiana , Penicilinas/uso terapéutico
12.
BMC Genomics ; 22(1): 474, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172000

RESUMEN

BACKGROUND: Oxford Nanopore Technology (ONT) long-read sequencing has become a popular platform for microbial researchers due to the accessibility and affordability of its devices. However, easy and automated construction of high-quality bacterial genomes using nanopore reads remains challenging. Here we aimed to create a reproducible end-to-end bacterial genome assembly pipeline using ONT in combination with Illumina sequencing. RESULTS: We evaluated the performance of several popular tools used during genome reconstruction, including base-calling, filtering, assembly, and polishing. We also assessed overall genome accuracy using ONT both natively and with Illumina. All steps were validated using the high-quality complete reference genome for the Escherichia coli sequence type (ST)131 strain EC958. Software chosen at each stage were incorporated into our final pipeline, MicroPIPE. Further validation of MicroPIPE was carried out using 11 additional ST131 E. coli isolates, which demonstrated that complete circularised chromosomes and plasmids could be achieved without manual intervention. Twelve publicly available Gram-negative and Gram-positive bacterial genomes (with available raw ONT data and matched complete genomes) were also assembled using MicroPIPE. We found that revised basecalling and updated assembly of the majority of these genomes resulted in improved accuracy compared to the current publicly available complete genomes. CONCLUSIONS: MicroPIPE is built in modules using Singularity container images and the bioinformatics workflow manager Nextflow, allowing changes and adjustments to be made in response to future tool development. Overall, MicroPIPE provides an easy-access, end-to-end solution for attaining high-quality bacterial genomes. MicroPIPE is available at https://github.com/BeatsonLab-MicrobialGenomics/micropipe .


Asunto(s)
Escherichia coli , Genoma Bacteriano , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Flujo de Trabajo
13.
Eur J Clin Microbiol Infect Dis ; 40(2): 279-286, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32888117

RESUMEN

Epidemiological surveillance of Shigella spp. in Australia is conducted to inform public health response. Multi-drug resistance has recently emerged as a contributing factor to sustained local transmission of Shigella spp. All data were collected as part of routine public health surveillance, and strains were whole-genome sequenced for further molecular characterisation. 108 patients with an endemic regional Shigella flexneri strain were identified between 2016 and 2019. The S. flexneri phylogroup 3 strain endemic to northern Australia acquired a multi-drug resistance conferring blaDHA plasmid, which has an IncFII plasmid backbone with virulence and resistance elements typically found in IncR plasmids. This is the first report of multi-drug resistance in Shigella sp. in Australia that is not associated with men who have sex with men. This strain caused an outbreak of multi-drug-resistant S. flexneri in northern Australia that disproportionality affects Aboriginal and Torres Strait Islander children. Community controlled public health action is recommended.


Asunto(s)
Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Disentería Bacilar , Enfermedades Endémicas , Shigella flexneri , Adolescente , Australia/epidemiología , Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Humanos , Plásmidos , Shigella flexneri/genética , Shigella flexneri/aislamiento & purificación
14.
J Clin Microbiol ; 58(5)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102855

RESUMEN

Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-ß-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Infección Hospitalaria/epidemiología , Detergentes , Brotes de Enfermedades , Genómica , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Klebsiella , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Filogenia , beta-Lactamasas/genética
15.
Clin Infect Dis ; 69(7): 1232-1234, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30721938

RESUMEN

Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended.


Asunto(s)
Escarlatina/epidemiología , Escarlatina/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Australia/epidemiología , Biología Computacional/métodos , Brotes de Enfermedades , Genoma Bacteriano , Genómica/métodos , Humanos , Filogenia , Vigilancia de la Población , Escarlatina/diagnóstico
16.
Sex Health ; 16(5): 500-507, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481151

RESUMEN

Background Although rare, Neisseria gonorrhoeae treatment failures associated with ceftriaxone have been reported. The World Health Organization (WHO) recommends standardised protocols to verify these cases. Two cases from Australia were previously investigated using N. gonorrhoeae multiantigen sequence typing (NG-MAST), which has been used extensively to assess treatment failures. Case 1 pharyngeal isolates were indistinguishable, whereas Case 2 pharyngeal isolates were distinguished based on an 18-bp deletion in the major outer membrane porin encoded by the porB gene, questioning the reliability of NG-MAST results. Here we used whole-genome sequencing (WGS) to reinvestigate Cases 1 and 2, with a view to examining WGS to assess treatment failures. METHODS: Pre- and post-treatment isolates for each case underwent Illumina sequencing, and the two post-treatment isolates underwent additional long-read sequencing using Pacific Biosciences. Sequence data were interrogated to identify differences at single nucleotide resolution. RESULTS: WGS identified variation in the pilin subunit encoded by the pilE locus for both cases and the specific 18-bp porB deletion in Case 2 was confirmed, but otherwise the isolates in each case were indistinguishable. CONCLUSIONS: The WHO recommends standardised protocols for verifying N. gonorrhoeae treatment failures. Case 2 highlights the enhanced resolution of WGS over NG-MAST and emphasises the immediate effect that WGS can have in a direct clinical application for N. gonorrhoeae. Assessing the whole genome compared with two highly variable regions also provides a more confident predictor for determining treatment failure. Furthermore, WGS facilitates rapid comparisons of these cases in the future.


Asunto(s)
Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/genética , Secuenciación Completa del Genoma , Antibacterianos/uso terapéutico , Proteínas de la Membrana Bacteriana Externa/genética , Farmacorresistencia Bacteriana/genética , Humanos , Neisseria gonorrhoeae/efectos de los fármacos , Porinas/genética , Insuficiencia del Tratamiento
17.
Artículo en Inglés | MEDLINE | ID: mdl-27872077

RESUMEN

Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Tipificación de Secuencias Multilocus/métodos , Plásmidos/genética , Escherichia coli Uropatógena/genética , Carbapenémicos/farmacología , Replicación del ADN , Elementos Transponibles de ADN , Proteínas de Escherichia coli/genética , Escherichia coli Uropatógena/clasificación , beta-Lactamasas/genética
18.
J Antimicrob Chemother ; 72(10): 2729-2736, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091192

RESUMEN

Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Colistina/farmacología , Polimixina B/farmacología , Factores de Transcripción/genética , Escherichia coli Uropatógena/genética , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/genética , Aptitud Genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutagénesis , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 111(15): 5694-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706808

RESUMEN

Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum ß-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000-2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL-resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Filogenia , Secuencia de Bases , Biología Computacional , Fluoroquinolonas , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , beta-Lactamasas/metabolismo
20.
Antimicrob Agents Chemother ; 60(7): 4082-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27114281

RESUMEN

blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.


Asunto(s)
Plásmidos/genética , Acinetobacter/efectos de los fármacos , Acinetobacter/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA