Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 144(2): 253-67, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21241894

RESUMEN

The study of macroautophagy in mammalian cells has described induction, vesicle nucleation, and membrane elongation complexes as key signaling intermediates driving autophagosome biogenesis. How these components are recruited to nascent autophagosomes is poorly understood, and although much is known about signaling mechanisms that restrain autophagy, the nature of positive inductive signals that can promote autophagy remain cryptic. We find that the Ras-like small G protein, RalB, is localized to nascent autophagosomes and is activated on nutrient deprivation. RalB and its effector Exo84 are required for nutrient starvation-induced autophagocytosis, and RalB activation is sufficient to promote autophagosome formation. Through direct binding to Exo84, RalB induces the assembly of catalytically active ULK1 and Beclin1-VPS34 complexes on the exocyst, which are required for isolation membrane formation and maturation. Thus, RalB signaling is a primary adaptive response to nutrient limitation that directly engages autophagocytosis through mobilization of the core vesicle nucleation machinery.


Asunto(s)
Autofagia , Células Epiteliales/patología , Fagosomas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP ral/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Epiteliales/microbiología , Humanos , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Salmonella typhimurium/fisiología , Estrés Fisiológico , Proteínas de Transporte Vesicular/metabolismo
2.
Mol Cell ; 42(5): 650-61, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658605

RESUMEN

The coordination of the several pathways involved in cell motility is poorly understood. Here, we identify SH3BP1, belonging to the RhoGAP family, as a partner of the exocyst complex and establish a physical and functional link between two motility-driving pathways, the Ral/exocyst and Rac signaling pathways. We show that SH3BP1 localizes together with the exocyst to the leading edge of motile cells and that SH3BP1 regulates cell migration via its GAP activity upon Rac1. SH3BP1 loss of function induces abnormally high Rac1 activity at the front, as visualized by in vivo biosensors, and disorganized and instable protrusions, as revealed by cell morphodynamics analysis. Consistently, constitutively active Rac1 mimics the phenotype of SH3BP1 depletion: slow migration and aberrant cell morphodynamics. Our finding that SH3BP1 downregulates Rac1 at the motile-cell front indicates that Rac1 inactivation in this location, as well as its activation by GEF proteins, is a fundamental requirement for cell motility.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Activadoras de GTPasa/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Regulación hacia Abajo , Activación Enzimática , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Silenciador del Gen , Centro Organizador de los Microtúbulos/fisiología , Centro Organizador de los Microtúbulos/ultraestructura , Ratas , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/fisiología
3.
Mol Cell ; 41(4): 458-70, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329883

RESUMEN

The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here, we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low-nanomolar TBK1 inhibitor, indicates that this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling.


Asunto(s)
Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Transformación Celular Neoplásica , Células Cultivadas , Células HCT116 , Humanos , Inmunidad Innata , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transfección
4.
BMC Biol ; 16(1): 109, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30285739

RESUMEN

BACKGROUND: The WW domain-containing oxidoreductase (WWOX) gene, frequently altered in breast cancer, encodes a tumor suppressor whose function is mediated through its interactions with cancer-related proteins, such as the pro-apoptotic protein p73α. RESULTS: To better understand the involvement of WWOX in breast tumorigenesis, we performed a yeast two-hybrid screen and co-immunoprecipitation assays to identify novel partners of this protein. We characterized the vesicular overexpressed in cancer pro-survival protein 1 (VOPP1) as a new regulator of WWOX. In breast cancer cells, VOPP1 sequestrates WWOX in lysosomes, impairs its ability to associate with p73α, and inhibits WWOX-dependent apoptosis. Overexpressed VOPP1 potentiates cellular transformation and enhances the growth of transplanted tumors in vivo. VOPP1 is overexpressed in breast tumors, especially in tumors that retain WWOX. Moreover, increased expression of VOPP1 is associated with reduced survival of patients with WWOX-positive, but not with WWOX-negative, tumors. CONCLUSIONS: These findings emphasize the importance of the sequestration of WWOX by VOPP1 in addition to WWOX loss in breast tumors and define VOPP1 as a novel oncogene promoting breast carcinogenesis by inhibiting the anti-tumoral effect of WWOX.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo
5.
J Cell Sci ; 129(20): 3756-3769, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591259

RESUMEN

Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.


Asunto(s)
Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Humanos , Unión Proteica , Subunidades de Proteína/metabolismo
6.
PLoS Biol ; 13(3): e1002087, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25764135

RESUMEN

Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.


Asunto(s)
Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microtúbulos/genética , Morfogénesis/genética , Proteínas Nucleares/genética , alfa Catenina/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Adipocitos/citología , Adipocitos/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular , Polaridad Celular , Forma de la Célula , Perros , Embrión no Mamífero , Células Epiteliales/citología , Vectores Genéticos , Humanos , Lentivirus/genética , Células de Riñón Canino Madin Darby , Proteínas de Microtúbulos/antagonistas & inhibidores , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oryzias , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , alfa Catenina/metabolismo
7.
J Biol Chem ; 290(47): 28056-28069, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26359495

RESUMEN

SNAREs constitute the core machinery of intracellular membrane fusion, but vesicular SNAREs localize to specific compartments via largely unknown mechanisms. Here, we identified an interaction between VAMP7 and SNAP-47 using a proteomics approach. We found that SNAP-47 mainly localized to cytoplasm, the endoplasmic reticulum (ER), and ERGIC and could also shuttle between the cytoplasm and the nucleus. SNAP-47 preferentially interacted with the trans-Golgi network VAMP4 and post-Golgi VAMP7 and -8. SNAP-47 also interacted with ER and Golgi syntaxin 5 and with syntaxin 1 in the absence of Munc18a, when syntaxin 1 is retained in the ER. A C-terminally truncated SNAP-47 was impaired in interaction with VAMPs and affected their subcellular distribution. SNAP-47 silencing further shifted the subcellular localization of VAMP4 from the Golgi apparatus to the ER. WT and mutant SNAP-47 overexpression impaired VAMP7 exocytic activity. We conclude that SNAP-47 plays a role in the proper localization and function of a subset of VAMPs likely via regulation of their transport through the early secretory pathway.


Asunto(s)
Proteínas Q-SNARE/fisiología , Proteínas R-SNARE/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
8.
Cancer Gene Ther ; 30(8): 1144-1155, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248434

RESUMEN

The tumor suppressor gene WWOX is localized in an unstable chromosomal region and its expression is decreased or absent in several types of cancer. A low expression of WWOX is associated with a poor prognosis in breast cancer (BC). It has recently been shown that WWOX contributes to genome stability through its role in the DNA damage response (DDR). In breast cancer cells, WWOX inhibits homologous recombination (HR), and thus promotes the repair of DNA double-stranded breaks (DSBs) by non-homologous end joining (NHEJ). The fine-tuning modulation of HR activity is crucial. Its under or overstimulation inducing genome alterations that can induce cancer. MERIT40 is a positive regulator of the DDR. This protein is indispensable for the function of the multi-protein complex BRCA1-A, which suppresses excessive HR activity. MERIT40 also recruits Tankyrase, a positive regulator of HR, to the DSBs to stimulate DNA repair. Here, we identified MERIT40 as a new molecular partner of WWOX. We demonstrated that WWOX inhibited excessive HR activity induced by overexpression of MERIT40. We showed that WWOX impaired the MERIT40-Tankyrase interaction preventing the role of the complex on DSBs. Furthermore, we found that MERIT40 is overexpressed in BC and that this overexpression is associated to a poor prognosis. These results strongly suggest that WWOX, through its interaction with MERIT40, prevents the deleterious impact of excessive HR on BC development by inhibiting MERIT40-Tankyrase association. This inhibitory effect of WWOX would oppose MERIT40-dependent BC development.


Asunto(s)
Neoplasias de la Mama , Recombinación Homóloga , Femenino , Humanos , Neoplasias de la Mama/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Tanquirasas/genética , Tanquirasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo
9.
Dev Cell ; 58(22): 2477-2494.e8, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37875118

RESUMEN

Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.


Asunto(s)
Proteínas del Citoesqueleto , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas del Citoesqueleto/metabolismo , Transducción de Señal , Proteínas Portadoras/metabolismo , Cilios/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP rab/metabolismo
10.
J Cell Sci ; 123(Pt 7): 1099-107, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20215404

RESUMEN

Organization of the plasma membrane in polarized epithelial cells is accomplished by the specific localization of transmembrane or membrane-associated proteins, which are often linked to cytoplasmic protein complexes, including the actin cytoskeleton. In this study, we identified Sip1 as a Drosophila orthologue of the ezrin-radixin-moesin (ERM) binding protein 50 (EBP50; also known as the Na(+)/H(+) exchanger regulatory factor NHERF1). In mammals, EBP50/NHERF1 is a scaffold protein required for the regulation of several transmembrane receptors and downstream signal transduction activity. In Drosophila, loss of Sip1 leads to a reduction in Slik kinase protein abundance, loss of Moesin phosphorylation and changes in epithelial structure, including mislocalization of E-cadherin and F-actin. Consistent with these findings, Moesin and Sip1 act synergistically in genetic-interaction experiments, and Sip1 protein abundance is dependent on Moesin. Co-immunoprecipitation experiments indicate that Sip1 forms a complex with both Moesin and Slik. Taken together, these data suggest that Sip1 promotes Slik-dependent phosphorylation of Moesin, and suggests a mechanism for the regulation of Moesin activity within the cell to maintain epithelial integrity.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Actinas/metabolismo , Animales , Cadherinas/metabolismo , Polaridad Celular , Drosophila , Proteínas de Drosophila/genética , Células Epiteliales/patología , GTP Fosfohidrolasas/genética , Humanos , Fosfoproteínas/genética , Unión Proteica , Transporte de Proteínas , Septinas , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/genética
11.
PLoS Biol ; 7(11): e1000235, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19885391

RESUMEN

Atypical protein kinase C (aPKC) isoforms have been implicated in cell polarisation and migration through association with Cdc42 and Par6. In distinct migratory models, the Exocyst complex has been shown to be involved in secretory events and migration. By RNA interference (RNAi) we show that the polarised delivery of the Exocyst to the leading edge of migrating NRK cells is dependent upon aPKCs. Reciprocally we demonstrate that aPKC localisation at the leading edge is dependent upon the Exocyst. The basis of this inter-dependence derives from two-hybrid, mass spectrometry, and co-immunoprecipitation studies, which demonstrate the existence of an aPKC-Exocyst interaction mediated by Kibra. Using RNAi and small molecule inhibitors, the aPKCs, Kibra, and the Exocyst are shown to be required for NRK cell migration and it is further demonstrated that they are necessary for the localized activation of JNK at the leading edge. The migration associated control of JNK by aPKCs determines JNK phosphorylation of the plasma membrane substrate Paxillin, but not the phosphorylation of the nuclear JNK substrate, c-jun. This plasma membrane localized JNK cascade serves to control the stability of focal adhesion complexes, regulating migration. The study integrates the polarising behaviour of aPKCs with the pro-migratory properties of the Exocyst complex, defining a higher order complex associated with the localised activation of JNK at the leading edge of migrating cells that determines migration rate.


Asunto(s)
Movimiento Celular , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Paxillin/metabolismo , Proteína Quinasa C/metabolismo , Animales , Western Blotting , Carbazoles/farmacología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Exocitosis , Adhesiones Focales/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Microscopía Confocal , Microtúbulos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfoproteínas , Fosforilación , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteínas/genética , Proteínas/metabolismo , Interferencia de ARN , Ratas , Técnicas del Sistema de Dos Híbridos
12.
Biochim Biophys Acta ; 1793(2): 264-72, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18930083

RESUMEN

TGFalpha and its receptor EGFR participate in the development of a wide range of tumors including gliomas, the main adult primary brain tumors. TGFalpha soluble form results from the cleavage by the metalloprotease TACE/ADAM17 of the extracellular part of its transmembrane precursor, pro-TGFalpha. To gain insights into the mechanisms underlying TGFalpha bioavailability, a yeast two-hybrid screen was performed to identify proteins interacting with pro-TGFalpha intracellular domain (ICD). DLG1/SAP97 (Discs Large Gene 1 or Synapse Associated Protein 97) was found to interact with both pro-TGFalpha and TACE ICDs through distinct PDZ domains. An in vivo pro-TGFalpha-DLG1-TACE complex was detected in U251 glioma cells and in gliomas-derived tumor initiating cells. Interaction between DLG1 and TACE diminished in response to stimulations promoting pro-TGFalpha shedding. Manipulation of DLG1 levels revealed dual actions of DLG1 on pro-TGFalpha shedding, favoring approximation of pro-TGFalpha and TACE, while limiting TACE full shedding activity. These results show that DLG1 participates in the control of TGFalpha bioavailability through its dynamic interaction with the growth factor precursor and TACE.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animales , Disponibilidad Biológica , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Homólogo 1 de la Proteína Discs Large , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Unión Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Factor de Crecimiento Transformador alfa/química , Técnicas del Sistema de Dos Híbridos
13.
PLoS One ; 15(5): e0232679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437351

RESUMEN

Skin aspartic acid protease (SASPase) is believed to be a key enzyme involved in filaggrin processing during epidermal terminal differentiation. Since little is known about the regulation of SASPase function, the aim of this study was to identify involved protein partners in the process. Yeast two hybrid analyses using SASPase as bait against a human reconstructed skin library identified that the N-terminal domain of filaggrin 2 binds to the N-terminal fragment of SASPase. This interaction was confirmed in reciprocal yeast two hybrid screens and by Surface Plasmon Resonance analyses. Immunohistochemical studies in human skin, using specific antibodies to SASPase and the N-terminal domain of filaggrin 2, showed that the two proteins partially co-localized to the stratum granulosum. In vitro enzymatic assays showed that the N-terminal domain of filaggrin 2 enhanced the autoactivation of SASPase to its 14 kDa active form. Taken together, the data suggest that the N-terminal domain of filaggrin 2 regulates the activation of SASPase that may be a key event upstream of filaggrin processing to natural moisturizing factors in the human epidermis.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Proteínas S100/metabolismo , Piel/metabolismo , Ácido Aspártico Endopeptidasas/análisis , Activación Enzimática , Proteínas Filagrina , Humanos , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas S100/análisis
15.
Oligonucleotides ; 16(4): 387-94, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17155913

RESUMEN

Gene silencing by RNA interference (RNAi) has proven to be a powerful tool for investigating gene function in mammalian cells. Combination of several short interfering RNA (siRNA) targeting the same gene is commonly used to improve RNA interference. However, in contrary to the well-described mechanism of RNAi, efficiency of single siRNA compared to pool remains poorly documented. We addressed this issue using several active and inactive siRNA targeting Eg5, a kinesin-related motor involved in mitotic spindle assembly. These siRNA, used alone or in combination, were tested for their silencing efficiency in several cancer cell lines. Here we show that presence of inactive Eg5 siRNA in a pool dramatically decreases knockdown efficacy in a cell line- and dose-dependent manner. Lack of inhibition by unrelated siRNA suggests that a competition may occur during siRNA incorporation into RNA-induced silencing complexes (RISCs) along with the target mRNA. Altogether, our results, which need to be confirmed with additional inactive siRNA, indicate that combination of siRNA may not increase but instead decrease silencing efficiency.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Cinesinas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Secuencia de Bases , Línea Celular Tumoral , ADN Complementario/genética , Humanos , Mitosis/efectos de los fármacos , Mitosis/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transfección
16.
Mol Cancer Res ; 13(5): 902-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25678599

RESUMEN

UNLABELLED: The WW domain containing oxidoreductase (WWOX) has recently been shown to inhibit of the Wnt/ß-catenin pathway by preventing the nuclear import of disheveled 2 (DVL2) in human breast cancer cells. Here, it is revealed that WWOX also interacts with the BCL9-2, a cofactor of the Wnt/ß-catenin pathway, to enhance the activity of the ß-catenin-TCF/LEF (T-cell factor/lymphoid enhancer factors family) transcription factor complexes. By using both a luciferase assay in MCF-7 cells and a Xenopus secondary axis induction assay, it was demonstrated that WWOX inhibits the BCL9-2 function in Wnt/ß-catenin signaling. WWOX does not affect the BCL9-2-ß-catenin association and colocalizes with BCL9-2 and ß-catenin in the nucleus of the MCF-7 cells. Moreover, WWOX inhibits the ß-catenin-TCF1 interaction. Further examination found that HDAC3 associates with BCL9-2, enhances the inhibitory effect of WWOX on BCL9-2 transcriptional activity, and promotes the WWOX-BCL9-2 interaction, independent of its deacetylase activity. However, WWOX does not influence the HDAC3-BCL9-2 interaction. Altogether, these results strongly indicate that nuclear WWOX interacts with BCL9-2 associated with ß-catenin only when BCL9-2 is in complex with HDAC3 and inhibits its transcriptional activity, in part, by inhibiting the ß-catenin-TCF1 interaction. The promotion of the WWOX-BCL9-2 interaction by HDAC3, independent of its deacetylase activity, represents a new mechanism by which this HDAC inhibits transcription. IMPLICATIONS: The inhibition of the transcriptional activity of BCL9-2 by WWOX and HDAC3 constitutes a new molecular mechanism and provides new insight for a broad range of cancers.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Histona Desacetilasas/genética , Oxidorreductasas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Ratones , Oxidorreductasas/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW , Xenopus , beta Catenina/metabolismo
17.
Mol Cell Biol ; 35(21): 3633-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26283729

RESUMEN

The exocyst is a heterooctomeric complex well appreciated for its role in the dynamic assembly of specialized membrane domains. Accumulating evidence indicates that this macromolecular machine also serves as a physical platform that coordinates regulatory cascades supporting biological systems such as host defense signaling, cell fate, and energy homeostasis. The isolation of multiple components of the DNA damage response (DDR) as exocyst-interacting proteins, together with the identification of Sec8 as a suppressor of the p53 response, suggested functional interactions between the exocyst and the DDR. We found that exocyst perturbation resulted in resistance to ionizing radiation (IR) and accelerated resolution of DNA damage. This occurred at the expense of genomic integrity, as enhanced recombination frequencies correlated with the accumulation of aberrant chromatid exchanges. Sec8 perturbation resulted in the accumulation of ATF2 and RNF20 and the promiscuous accumulation of DDR-associated chromatin marks and Rad51 repairosomes. Thus, the exocyst supports DNA repair fidelity by limiting the formation of repair chromatin in the absence of DNA damage.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Proteínas de Transporte Vesicular/metabolismo , Factor de Transcripción Activador 2/análisis , Factor de Transcripción Activador 2/metabolismo , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Beclina-1 , Línea Celular Tumoral , Exocitosis , Eliminación de Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/análisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte Vesicular/análisis
18.
Biochem Pharmacol ; 66(8): 1581-8, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14555237

RESUMEN

PEA-15 is a small protein (15 kDa) that was first identified as an abundant phosphoprotein in brain astrocytes [Araujo et al., J Biol Chem 1993;268(8):5911-20], and subsequently shown to be widely expressed in different tissues and highly conserved among mammals [Estelles et al., J Biol Chem 1996;271(25):14800-6; Danziger et al., J Neurochem 1995;64(3):1016-25]. It is composed of a N-terminal death effector domain and a C-terminal tail of irregular structure. PEA-15 is regulated by multiple calcium-dependent phosphorylation pathways that account for its different forms: a non-phosphorylated form in equilibrium with a mono and a biphosphorylated variety. This already suggested that PEA-15 may play a major role in signal integration. Accordingly, it has been demonstrated to modulate signaling pathways that control apoptosis and cell proliferation. In particular, PEA-15 diverts astrocytes from TNFalpha-triggered apoptosis and regulates the actions of the ERK MAP kinase cascade by binding to ERK and altering its subcellular localization. The three-dimensional structure of PEA-15 has been modelized and recently determined using NMR spectroscopy, and may help to understand the various functions played by the protein through its molecular interactions.


Asunto(s)
Apoptosis/fisiología , Astrocitos/citología , Fosfoproteínas/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Astrocitos/metabolismo , Ciclo Celular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosfoproteínas/genética , Transcripción Genética , Factor de Necrosis Tumoral alfa/fisiología
19.
Mol Biol Cell ; 24(9): 1420-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468526

RESUMEN

RhoA, a small GTPase, regulates epithelial integrity and morphogenesis by controlling filamentous actin assembly and actomyosin contractility. Another important cytoskeletal regulator, Moesin (Moe), an ezrin, radixin, and moesin (ERM) protein, has the ability to bind to and organize cortical F-actin, as well as the ability to regulate RhoA activity. ERM proteins have previously been shown to interact with both RhoGEF (guanine nucleotide exchange factors) and RhoGAP (GTPase activating proteins), proteins that control the activation state of RhoA, but the functions of these interactions remain unclear. We demonstrate that Moe interacts with an unusual RhoGAP, Conundrum (Conu), and recruits it to the cell cortex to negatively regulate RhoA activity. In addition, we show that cortically localized Conu can promote cell proliferation and that this function requires RhoGAP activity. Surprisingly, Conu's ability to promote growth also appears dependent on increased Rac activity. Our results reveal a molecular mechanism by which ERM proteins control RhoA activity and suggest a novel linkage between the small GTPases RhoA and Rac in growth control.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Forma de la Célula , Supervivencia Celular , Ojo Compuesto de los Artrópodos/metabolismo , Drosophila melanogaster/citología , Células Epiteliales/fisiología , Epitelio/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Discos Imaginales/metabolismo , Masculino , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas
20.
J Cell Biol ; 202(3): 431-9, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23918937

RESUMEN

Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3(MEL-26)), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3(MEL-26)-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Katanina , Complejos Multiproteicos/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA