Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Endocrinol Metab ; 320(3): E475-E487, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356993

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.


Asunto(s)
Aclimatación/genética , Frío , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Termogénesis/genética , Animales , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Caracteres Sexuales
2.
Exp Physiol ; 106(2): 427-437, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33332767

RESUMEN

NEW FINDINGS: What is the central question of this study? Can chronic treatment of pituitary adenylate cyclase-activating polypeptide (PACAP) deficient mice with the melanocortin agonist melanotan II during cold acclimation rescue the impaired thermogenic capacity previously observed in PACAP deficient mice? What is the main finding and its importance? Using a genetic model of PACAP deficiency, this study provides evidence that PACAP acts upstream of the melanocortin system in regulating sympathetic nerve activity to brown adipose tissue in mice. ABSTRACT: Impaired adipose tissue function in obesity, including reduced thermogenic potential, has detrimental consequences for metabolic health. Hormonal regulation of adaptive thermogenesis is being explored as a potential therapeutic target for human obesity. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed in nuclei of the hypothalamus known to regulate energy expenditure, and functional studies reveal a role for PACAP in the central regulation of thermogenesis, although mechanisms are not well understood. We hypothesized that PACAP acts upstream of the melanocortin system to regulate sympathetic nerve activity to stimulate thermogenesis. To assess this, female PACAP-/- and PACAP+/+ mice were given daily peripheral injections of a melanocortin receptor agonist, melanotan II (MTII), for 3 weeks during cold acclimation, and the effect of MTII on thermogenic capacity and adipose tissue remodelling was examined by physiological and histological analyses. MTII partially rescued the impaired thermogenic capacity in PACAP-/- mice as compared to PACAP+/+ mice as determined by measuring noradrenaline-induced metabolic rate. In addition, MTII treatment during cold acclimation corrected the previously identified deficit in lipid utilization in response to adrenergic stimulation in PACAP-/- null mice, suggesting impaired lipid mobilization may contribute to the impaired thermogenic capacity of PACAP-/- mice. Results presented here provide physiological evidence to suggest that PACAP acts upstream of melanocortin receptors to facilitate sympathetically induced mechanisms of adaptive thermogenesis in response to cold acclimation.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Péptidos Cíclicos/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Termogénesis/efectos de los fármacos , alfa-MSH/análogos & derivados , Adaptación Fisiológica/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Frío , Ratones , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , alfa-MSH/farmacología
3.
J Mol Neurosci ; 68(3): 427-438, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29982965

RESUMEN

Obesity arises from disrupted energy balance and is caused by chronically higher energy intake compared to expenditure via basal metabolic rate, exercise, and thermogenesis. The brown adipose tissue (BAT), the primary thermogenic organ, has received considerable attention as a potential therapeutic target due to its ability to burn lipids in the production of heat. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified as a key regulator of the physiological stress response both centrally and peripherally. While PACAP has been shown to increase thermogenesis by acting at the hypothalamus to increase sympathetic output to BAT, a peripheral role for PACAP-activated thermogenesis has not been studied. We identified PACAP receptor (PAC1, VPAC1/2) expression for the first time in murine BAT and confirmed their expression in white adipose tissues. PAC1 receptor expression was significantly altered in all three adipose tissues studied in response to 3.5-week cold acclimation, with expression patterns differing by depot type. In primary cell culture, VPAC1 was increased in differentiated compared to non-differentiated brown adipocytes, and the same trend was observed for the PACAP-specific receptor PAC1 in gonadal white fat primary cultures. The primary PAC1R mRNA splice variant in interscapular BAT was determined as isoform 2 by RNA-Seq. These results show that PACAP receptors are present in adipose tissues and may have important functional roles in adipocyte differentiation, lipid metabolism, or adipose sensitization to sympathetic signaling in response to thermogenic stimuli.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Respuesta al Choque por Frío , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Empalme del ARN , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores de Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA